IDEAS home Printed from https://ideas.repec.org/p/bzn/wpaper/bemps112.html
   My bibliography  Save this paper

A nonparametric conditional copula-based imputation method

Author

Listed:
  • F. Marta L. Di Lascio

    (Free University of Bozen-Bolzano, Italy)

  • Aurora Gatto

    (Free University of Bozen-Bolzano, Italy)

Abstract

Missing values in multivariate dependent variables may occur during data collection, requiring imputation methods capable of handling complex intervariable relationships. We propose a nonparametric copula-based method for imputing dependent multivariate missing data, called NPCoImp. By leveraging the conditional empirical beta copula of the missing variables given the observed ones, NPCoImp imputes data while accounting for its distributional shape, particularly radial symmetry, and adjusting the multivariate values used for imputation accordingly. NPCoImp is highly exible and can handle multivariate missing data with any type of missingness pattern. The performance of the NPCoImp has been evaluated through an extensive Monte Carlo study and compared with classical imputation methods, as well as with its direct competitor, the CoImp algorithm. Our findings indicate that NPCoImp is particularly effective in preserving microdata and dependence structure. The strong performance of the proposed method is further supported by empirical case studies in the agricultural sector. Finally, the NPCoImp algorithm has been implemented in the R package CoImp, which is available on CRAN.

Suggested Citation

  • F. Marta L. Di Lascio & Aurora Gatto, 2025. "A nonparametric conditional copula-based imputation method," BEMPS - Bozen Economics & Management Paper Series BEMPS112, Faculty of Economics and Management at the Free University of Bozen.
  • Handle: RePEc:bzn:wpaper:bemps112
    as

    Download full text from publisher

    File URL: https://repec.unibz.it/bemps112.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
    2. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazem Krichene & Abhijit Chakraborty & Hiroyasu Inoue & Yoshi Fujiwara, 2017. "Business cycles’ correlation and systemic risk of the Japanese supplier-customer network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-22, October.
    2. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    3. Rašiová, Barbara & Árendáš, Peter, 2023. "Copula approach to market volatility and technology stocks dependence," Finance Research Letters, Elsevier, vol. 52(C).
    4. Emmanoulides, Christos & Fousekis, Panos, 2014. "Vertical Price Transmission in the US Pork Industry: Evidence from Copula Models," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(01), pages 1-12.
    5. Lyu, Meng-Ze & Liu, Yang-Yi & Chen, Jian-Bing, 2025. "A novel model and simulation method for multivariate Gaussian fields involving nonlinear probabilistic dependencies and different variable-wise spatial variabilities," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    6. Beatrice D. Simo-Kengne & Kofi A. Ababio & Jules Mba & Ur Koumba, 2018. "Behavioral portfolio selection and optimization: an application to international stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(3), pages 311-328, August.
    7. Jarimi, Hasila & Al-Waeli, Ali H.A. & Razak, Tajul Rosli & Abu Bakar, Mohd Nazari & Fazlizan, Ahmad & Ibrahim, Adnan & Sopian, Kamaruzzaman, 2022. "Neural network modelling and performance estimation of dual-fluid photovoltaic thermal solar collectors in tropical climate conditions," Renewable Energy, Elsevier, vol. 197(C), pages 1009-1019.
    8. Kexin Li & Jianxu Liu & Yuting Xue & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Consequences of Ignoring Dependent Error Components and Heterogeneity in a Stochastic Frontier Model: An Application to Rice Producers in Northern Thailand," Agriculture, MDPI, vol. 12(8), pages 1-17, July.
    9. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.
    10. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Analysing the relationship between district heating demand and weather conditions through conditional mixture copula," BEMPS - Bozen Economics & Management Paper Series BEMPS68, Faculty of Economics and Management at the Free University of Bozen.
    11. Wu Zening & He Chentao & Huiliang Wang & Qian Zhang, 2020. "Reservoir Inflow Synchronization Analysis for Four Reservoirs on a Mainstream and its Tributaries in Flood Season Based on a Multivariate Copula Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2753-2770, July.
    12. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    13. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    14. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    15. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    16. Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    17. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Thabani Ndlovu & Delson Chikobvu, 2024. "The GARCH-EVT-Copula Approach to Investigating Dependence and Quantifying Risk in a Portfolio of Bitcoin and the South African Rand," JRFM, MDPI, vol. 17(11), pages 1-16, November.
    19. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    20. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bzn:wpaper:bemps112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: F. Marta L. Di Lascio or Alessandro Fedele (email available below). General contact details of provider: https://edirc.repec.org/data/feubzit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.