IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001668.html
   My bibliography  Save this article

A novel model and simulation method for multivariate Gaussian fields involving nonlinear probabilistic dependencies and different variable-wise spatial variabilities

Author

Listed:
  • Lyu, Meng-Ze
  • Liu, Yang-Yi
  • Chen, Jian-Bing

Abstract

The inherent randomness of engineering structures significantly influences the analysis of structural stochastic responses and safety assessments. It is critical to quantify the three aspects of random fields, including the randomness of individual variables, the probabilistic interdependence among multiple variables, and the spatiotemporal correlation of fields. This paper introduces a novel modeling framework for multivariate fields that accommodates both nonlinear probabilistic dependencies captured through copula, and the distinct spatial variability of individual fields described by correlation functions. Specifically, the framework defines a new analytical function, termed the bridge function, which establishes the relationship between the correlation functions of two fields governed by any copula structure. This proves the consistency of the new model, i.e., the copula function, as a between-variable constraint, allows the spatial correlation function of different variables to be freely selected, either with different correlation length or even with different shape. Further, to facilitate simulation, by the bridge function samples from multiple independent Gaussian fields can be onverted into those of multivariate fields that involve the specified vine copula dependencies and individual correlation functions. This approach addresses the challenge of simultaneously satisfying nonlinear dependencies and spatial variability in multivariate field simulations. The paper details the analytical expressions and numerical solution procedures for the bridge function, along with a comprehensive simulation method that integrates vine-copula-based conditional sampling and stochastic harmonic functions. The effectiveness of the proposed method is validated through various engineering application case studies, demonstrating its potential for accurate uncertainty quantification in complex engineering scenarios.

Suggested Citation

  • Lyu, Meng-Ze & Liu, Yang-Yi & Chen, Jian-Bing, 2025. "A novel model and simulation method for multivariate Gaussian fields involving nonlinear probabilistic dependencies and different variable-wise spatial variabilities," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001668
    DOI: 10.1016/j.ress.2025.110963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.