IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001668.html
   My bibliography  Save this article

A novel model and simulation method for multivariate Gaussian fields involving nonlinear probabilistic dependencies and different variable-wise spatial variabilities

Author

Listed:
  • Lyu, Meng-Ze
  • Liu, Yang-Yi
  • Chen, Jian-Bing

Abstract

The inherent randomness of engineering structures significantly influences the analysis of structural stochastic responses and safety assessments. It is critical to quantify the three aspects of random fields, including the randomness of individual variables, the probabilistic interdependence among multiple variables, and the spatiotemporal correlation of fields. This paper introduces a novel modeling framework for multivariate fields that accommodates both nonlinear probabilistic dependencies captured through copula, and the distinct spatial variability of individual fields described by correlation functions. Specifically, the framework defines a new analytical function, termed the bridge function, which establishes the relationship between the correlation functions of two fields governed by any copula structure. This proves the consistency of the new model, i.e., the copula function, as a between-variable constraint, allows the spatial correlation function of different variables to be freely selected, either with different correlation length or even with different shape. Further, to facilitate simulation, by the bridge function samples from multiple independent Gaussian fields can be onverted into those of multivariate fields that involve the specified vine copula dependencies and individual correlation functions. This approach addresses the challenge of simultaneously satisfying nonlinear dependencies and spatial variability in multivariate field simulations. The paper details the analytical expressions and numerical solution procedures for the bridge function, along with a comprehensive simulation method that integrates vine-copula-based conditional sampling and stochastic harmonic functions. The effectiveness of the proposed method is validated through various engineering application case studies, demonstrating its potential for accurate uncertainty quantification in complex engineering scenarios.

Suggested Citation

  • Lyu, Meng-Ze & Liu, Yang-Yi & Chen, Jian-Bing, 2025. "A novel model and simulation method for multivariate Gaussian fields involving nonlinear probabilistic dependencies and different variable-wise spatial variabilities," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001668
    DOI: 10.1016/j.ress.2025.110963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Cheng & Yin, Weihao & Liu, Xueting & Huang, Yanwen & Lu, Dagang & Zhang, Jie, 2024. "Tornado-induced risk analysis of railway system considering the correlation of parameters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Zhao, Tengyuan & Wang, Yu, 2020. "Non-parametric simulation of non-stationary non-gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    4. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    5. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    6. Alibeikloo, Mehrnaz & Khabbaz, Hadi & Fatahi, Behzad, 2022. "Random Field Reliability Analysis for Time-Dependent Behaviour of Soft Soils Considering Spatial Variability of Elastic Visco-Plastic Parameters," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Chen, Jianbing & Liu, Zenghui & Song, Yupeng & Peng, Yongbo & Li, Jie, 2022. "Experimental study on dynamic responses of a spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 560-578.
    8. Guan, Zheng & Wang, Yu, 2023. "Data-driven simulation of two-dimensional cross-correlated random fields from limited measurements using joint sparse representation," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    9. Xu, Hao & Gardoni, Paolo, 2020. "Conditional formulation for the calibration of multi-level random fields with incomplete data," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jingran & Gao, Ruofan & Chen, Jianbing, 2022. "A sparse data-driven stochastic damage model for seismic reliability assessment of reinforced concrete structures," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Beatrice D. Simo-Kengne & Kofi A. Ababio & Jules Mba & Ur Koumba, 2018. "Behavioral portfolio selection and optimization: an application to international stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(3), pages 311-328, August.
    3. Wu Zening & He Chentao & Huiliang Wang & Qian Zhang, 2020. "Reservoir Inflow Synchronization Analysis for Four Reservoirs on a Mainstream and its Tributaries in Flood Season Based on a Multivariate Copula Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2753-2770, July.
    4. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    5. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    6. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    8. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    10. Cooke, R.M. & Kurowicka, D. & Wilson, K., 2015. "Sampling, conditionalizing, counting, merging, searching regular vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 4-18.
    11. Chaudhry, Aqeel Afzal & Zhang, Chao & Ernst, Oliver G. & Nagel, Thomas, 2025. "Effects of inhomogeneity and statistical and material anisotropy on THM simulations," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    12. Fernandez, Viviana, 2017. "Some facts on the platinum-group elements," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 333-347.
    13. Erhardt, Tobias Michael & Czado, Claudia & Schepsmeier, Ulf, 2015. "Spatial composite likelihood inference using local C-vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 74-88.
    14. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    15. Guillaume Arnould & Catherine Bruneau & Zhun Peng, 2015. "Liquidity and Equity Short term fragility: Stress-tests for the European banking system," Post-Print halshs-01254729, HAL.
    16. Zhang, Ruijing & Dai, Hongzhe, 2022. "A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Catherine Bruneau & Alexis Flageollet & Zhun Peng, 2020. "Economic and financial risk factors, copula dependence and risk sensitivity of large multi-asset class portfolios," Annals of Operations Research, Springer, vol. 284(1), pages 165-197, January.
    19. Václav Klepáč & David Hampel, 2015. "Assessing Efficiency of D-Vine Copula ARMA-GARCH Method in Value at Risk Forecasting: Evidence from PSE Listed Companies," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(4), pages 1287-1295.
    20. Jiang, Fengyuan & Dong, Sheng, 2025. "Development of a CNN-based integrated surrogate model in evaluating the damage of buried pipeline under impact loads, considering the soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.