IDEAS home Printed from https://ideas.repec.org/p/bsl/wpaper/2014-09.html
   My bibliography  Save this paper

Relatedness and synergies of kind and scale in the evolution of helping

Author

Listed:
  • Peña, Jorge
  • Nöldeke, Georg
  • Lehmann, Laurent

Abstract

Relatedness and synergy affect the selection pressure on cooperation and altruism. Although early work investigated the effect of these factors independently of each other, recent efforts have been aimed at exploring their interplay. Here, we contribute to this ongoing synthesis in two distinct but complementary ways. First, we integrate models of n-player matrix games into the direct fitness approach of inclusive fitness theory, hence providing a framework to consider synergistic social interactions between relatives in family and spatially structured populations. Second, we illustrate the usefulness of this framework by delineating three distinct types of helping traits ("whole-group", "nonexpresser-only" and "expresser-only"), which are characterized by different synergies of kind (arising from differential fitness effects on individuals expressing or not expressing helping) and can be subjected to different synergies of scale (arising from economies or diseconomies of scale). We find that relatedness and synergies of kind and scale can interact to generate nontrivial evolutionary dynamics, such as cases of bistable coexistence featuring both a stable equilibrium with a positive level of helping and an unstable helping threshold. This broadens the qualitative effects of relatedness (or spatial structure) on the evolution of helping.

Suggested Citation

  • Peña, Jorge & Nöldeke, Georg & Lehmann, Laurent, 2014. "Relatedness and synergies of kind and scale in the evolution of helping," Working papers 2014/09, Faculty of Business and Economics - University of Basel.
  • Handle: RePEc:bsl:wpaper:2014/09
    as

    Download full text from publisher

    File URL: https://edoc.unibas.ch/server/api/core/bitstreams/baccd734-57d2-4a04-b8d1-4d3bd215bfc2/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Pepper, 2000. "Relatedness in Trait Group Models of Social Evolution," Working Papers 00-07-034, Santa Fe Institute.
    2. Van Cleve, Jeremy & Lehmann, Laurent, 2013. "Stochastic stability and the evolution of coordination in spatially structured populations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 75-87.
    3. Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, December.
    4. Jeff Gore & Hyun Youk & Alexander van Oudenaarden, 2009. "Snowdrift game dynamics and facultative cheating in yeast," Nature, Nature, vol. 459(7244), pages 253-256, May.
    5. Hubertus J. E. Beaumont & Jenna Gallie & Christian Kost & Gayle C. Ferguson & Paul B. Rainey, 2009. "Experimental evolution of bet hedging," Nature, Nature, vol. 462(7269), pages 90-93, November.
    6. Martin Ackermann & Bärbel Stecher & Nikki E. Freed & Pascal Songhet & Wolf-Dietrich Hardt & Michael Doebeli, 2008. "Self-destructive cooperation mediated by phenotypic noise," Nature, Nature, vol. 454(7207), pages 987-990, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leighton T Izu & Tamás Bányász & Ye Chen-Izu, 2015. "Optimizing Population Variability to Maximize Benefit," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    2. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    3. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    4. Si Tang & Yaqing Liu & Jianming Zhu & Xueyu Cheng & Lu Liu & Katrin Hammerschmidt & Jin Zhou & Zhonghua Cai, 2024. "Bet hedging in a unicellular microalga," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
    6. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    7. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    8. Patrick Kane & Kevin J S Zollman, 2015. "An Evolutionary Comparison of the Handicap Principle and Hybrid Equilibrium Theories of Signaling," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-14, September.
    9. Manalee Vishnu Surve & Smita Bhutda & Akshay Datey & Anjali Anil & Shalini Rawat & Athira Pushpakaran & Dipty Singh & Kwang Sik Kim & Dipshikha Chakravortty & Anirban Banerjee, 2018. "Heterogeneity in pneumolysin expression governs the fate of Streptococcus pneumoniae during blood-brain barrier trafficking," PLOS Pathogens, Public Library of Science, vol. 14(7), pages 1-29, July.
    10. Zibo Xu, 2013. "The instability of backward induction in evolutionary dynamics," Discussion Paper Series dp633, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    11. Bezin, Emeline & Ponthière, Gregory, 2019. "The tragedy of the commons and socialization: Theory and policy," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    12. Felix J H Hol & Peter Galajda & Krisztina Nagy & Rutger G Woolthuis & Cees Dekker & Juan E Keymer, 2013. "Spatial Structure Facilitates Cooperation in a Social Dilemma: Empirical Evidence from a Bacterial Community," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    13. Kerry E Boyle & Hilary Monaco & Dave van Ditmarsch & Maxime Deforet & Joao B Xavier, 2015. "Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-26, June.
    14. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    15. Pawlowitsch, Christina, 2008. "Why evolution does not always lead to an optimal signaling system," Games and Economic Behavior, Elsevier, vol. 63(1), pages 203-226, May.
    16. Richard J. Lindsay & Philippa J. Holder & Mark Hewlett & Ivana Gudelj, 2024. "Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Xinmiao An & Xiaomin Wang & Boyu Zhang, 2020. "Bimatrix Replicator Dynamics with Periodic Impulses," Dynamic Games and Applications, Springer, vol. 10(3), pages 676-694, September.
    18. Bryan K Lynn & Patrick De Leenheer & Martin Schuster, 2024. "Putting theory to the test: An integrated computational/experimental chemostat model of the tragedy of the commons," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-29, April.
    19. Brian McLoone & Wai-Tong Louis Fan & Adam Pham & Rory Smead & Laurence Loewe, 2018. "Stochasticity, Selection, and the Evolution of Cooperation in a Two-Level Moran Model of the Snowdrift Game," Complexity, Hindawi, vol. 2018, pages 1-14, February.
    20. Catherine Molho & Jorge Peña & Manvir Singh & Maxime Derex, 2024. "Do institutions evolve like material technologies?," Working Papers hal-04600184, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bsl:wpaper:2014/09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WWZ (email available below). General contact details of provider: https://edirc.repec.org/data/wwzbsch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.