IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2006-064.html
   My bibliography  Save this paper

The Limit Distribution of the Estimates in Cointegrated Regression Models with Multiple Structural Changes

Author

Listed:
  • Mohitosh Kejriwal

    (Boston University, Department of Economics)

  • Pierre Perron

    (Boston University, Department of Economics)

Abstract

This paper studies the problem of estimation and inference in cointegrated regression models with multiple structural changes. Our framework is general enough to incorporate both stationary and integrated regressors. Both pure and partial structural change models are analyzed. We derive the consistency, rate of convergence and the limit distribution of the estimated break fractions. Our conditions are considerably less restrictive than those in Bai, Lumsdaine and Stock (1998) who considered the single break case in a multi-equations system, and permit a wide class of practically relevant models. We show that if the coefficients of the integrated regressors are allowed to change, the estimated break fractions are asymptotically dependent so that confidence intervals need to be constructed jointly. Methods to construct such confidence intervals are discussed. If, however, only the intercept and/or the coefficients of the stationary regressors are allowed to change, the estimates of the break dates are asymptotically independent as in the stationary framework analyzed by Bai and Perron (1998). We also show that our results remain valid, under very weak conditions, when the potential endogeneity of the nonstationary regressors is accounted for via an increasing sequence of leads and lags of their first-differences as additional regressors. Simulation evidence is presented to assess the adequacy of the asymptotic approximations in finite samples.

Suggested Citation

  • Mohitosh Kejriwal & Pierre Perron, 2006. "The Limit Distribution of the Estimates in Cointegrated Regression Models with Multiple Structural Changes," Boston University - Department of Economics - Working Papers Series WP2006-064, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2006-064
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Altissimo, Filippo & Corradi, Valentina, 2003. "Strong rules for detecting the number of breaks in a time series," Journal of Econometrics, Elsevier, vol. 117(2), pages 207-244, December.
    3. Kejriwal, Mohitosh & Perron, Pierre, 2008. "Data Dependent Rules For Selection Of The Number Of Leads And Lags In The Dynamic Ols Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1425-1441, October.
    4. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    5. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    6. Perron, Pierre & Qu, Zhongjun, 2006. "Estimating restricted structural change models," Journal of Econometrics, Elsevier, vol. 134(2), pages 373-399, October.
    7. Seo, Byeongseon, 1998. "Tests For Structural Change In Cointegrated Systems," Econometric Theory, Cambridge University Press, vol. 14(2), pages 222-259, April.
    8. Hao, K., 1996. "Testing for Structural Change in Cointegrated Regression Models: Some Comparisons and Generalizations," Monash Econometrics and Business Statistics Working Papers 3/96, Monash University, Department of Econometrics and Business Statistics.
    9. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477444, June.
    10. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, April.
    11. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    12. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    13. Kejriwal, Mohitosh & Perron, Pierre, 2008. "The limit distribution of the estimates in cointegrated regression models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 146(1), pages 59-73, September.
    14. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    15. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    16. Marc Lavielle & Eric Moulines, 2000. "Least‐squares Estimation of an Unknown Number of Shifts in a Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 33-59, January.
    17. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    18. Hansen, Bruce E, 2002. "Tests for Parameter Instability in Regressions with I(1) Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 45-59, January.
    19. Kuo, Biing-Shen, 1998. "Test for partial parameter instability in regressions with I(1) processes," Journal of Econometrics, Elsevier, vol. 86(2), pages 337-368, June.
    20. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    21. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    22. Ng, Serena & Perron, Pierre, 1997. "Estimation and inference in nearly unbalanced nearly cointegrated systems," Journal of Econometrics, Elsevier, vol. 79(1), pages 53-81, July.
    23. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
    24. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    25. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 395-432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    2. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    3. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    4. Ye Li & Pierre Perron, 2017. "Inference on locally ordered breaks in multiple regressions," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 289-353, March.
    5. Skrobotov, Anton, 2021. "Structural breaks in cointegration models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 117-141.
    6. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    7. Mohitosh Kejriwal & Pierre Perron & Xuewen Yu, 2022. "A two‐step procedure for testing partial parameter stability in cointegrated regression models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 219-237, March.
    8. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    9. Eiji Kurozumi & Anton Skrobotov, 2018. "Confidence Sets for the Break Date in Cointegrating Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 514-535, June.
    10. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
    11. Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
    12. Haug Alfred A & Beyer Andreas & Dewald William, 2011. "Structural Breaks and the Fisher Effect," The B.E. Journal of Macroeconomics, De Gruyter, vol. 11(1), pages 1-31, May.
    13. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    14. Tarlok Singh, 2017. "Are Current Account Deficits in the OECD Countries Sustainable? Robust Evidence from Time-Series Estimators," The International Trade Journal, Taylor & Francis Journals, vol. 31(1), pages 29-64, January.
    15. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    16. Esteve, Vicente & Navarro-Ibáñez, Manuel & Prats, María A., 2020. "Stock prices, dividends, and structural changes in the long-term: The case of U.S," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    17. Pierre Perron & Yohei Yamamoto, 2008. "Estimating and Testing Multiple Structural Changes in Models with Endogenous Regressors," Boston University - Department of Economics - Working Papers Series wp2008-017, Boston University - Department of Economics.
    18. Pierre Perron & Yohei Yamamoto, 2015. "Using OLS to Estimate and Test for Structural Changes in Models with Endogenous Regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 119-144, January.
    19. Beyer, Andreas & Dewald, William G. & Haug, Alfred A., 2009. "Structural breaks, cointegration and the Fisher effect," Working Paper Series 1013, European Central Bank.
    20. Takatoshi Ito & Kimie Harada, 2005. "Japan premium and stock prices: two mirrors of Japanese banking crises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(3), pages 195-211.

    More about this item

    Keywords

    Change-point; Break Dates; Unit Roots; Cointegration; Confidence Intervals.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2006-064. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.