IDEAS home Printed from https://ideas.repec.org/p/boj/bojwps/13-e-12.html
   My bibliography  Save this paper

Risk Aggregation by a Copula with a Stressed Condition

Author

Listed:
  • Toshinao Yoshiba

    (Bank of Japan)

Abstract

This paper examines the marginal distributions of stocks and bonds, and a copula between the movement of stock prices and interest rates. Because some widely used aggregation methods such as variance-covariance tend to underestimate the risk of an aggregated portfolio, a copula is utilized for risk aggregation, which captures various dependencies in the median and the tail of marginal distributions, unlike a linear correlation. In this study, various types of copula, including one that simultaneously captures both positive and negative linear correlations, are analyzed under several time periods. We examine data related to the Euro crisis and the post-bubble period in Japan. Our analyses show that widely used risk aggregation methods may overestimate the diversification effect.

Suggested Citation

  • Toshinao Yoshiba, 2013. "Risk Aggregation by a Copula with a Stressed Condition," Bank of Japan Working Paper Series 13-E-12, Bank of Japan.
  • Handle: RePEc:boj:bojwps:13-e-12
    as

    Download full text from publisher

    File URL: http://www.boj.or.jp/en/research/wps_rev/wps_2013/data/wp13e12.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:oup:rfinst:v:25:y::i:12:p:3711-3751 is not listed on IDEAS
    2. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    3. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3711-3751.
    4. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    5. Daníelsson, Jón & Jorgensen, Bjørn N. & Samorodnitsky, Gennady & Sarma, Mandira & de Vries, Casper G., 2013. "Fat tails, VaR and subadditivity," Journal of Econometrics, Elsevier, vol. 172(2), pages 283-291.
    6. Michael S. Smith & Quan Gan & Robert J. Kohn, 2012. "Modelling dependence using skew t copulas: Bayesian inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 500-522, April.
    7. Yoshiyuki Fukuda & Kazutoshi Kan & Yoshihiko Sugihara, 2013. "Banks' Stockholdings and the Correlation between Bonds and Stocks: A Portfolio Theoretic Approach," Bank of Japan Working Paper Series 13-E-6, Bank of Japan.
    8. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshinao Yoshiba, 2015. "Risk Aggregation with Copula for Banking Industry," IMES Discussion Paper Series 15-E-01, Institute for Monetary and Economic Studies, Bank of Japan.
    2. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. André Lucas & Bernd Schwaab & Xin Zhang, 2017. "Modeling Financial Sector Joint Tail Risk in the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 171-191, January.
    2. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    3. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    4. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    5. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    6. Wei Huang & Meng-Shiuh Chang, 2021. "Gold and Government Bonds as Safe-Haven Assets Against Stock Market Turbulence in China," SAGE Open, , vol. 11(1), pages 21582440219, January.
    7. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    8. Dongming Zhu & John W. Galbraith, 2009. "Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution," CIRANO Working Papers 2009s-24, CIRANO.
    9. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    10. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    11. Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
    12. Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
    13. Andre Lucas & Bernd Schwaab & Xin Zhang, 2013. "Measuring Credit Risk in a Large Banking System: Econometric Modeling and Empirics," Tinbergen Institute Discussion Papers 13-063/IV/DSF56, Tinbergen Institute, revised 13 Oct 2014.
    14. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    15. Sakae Oya & Teruo Nakatsuma, 2021. "Identification in Bayesian Estimation of the Skewness Matrix in a Multivariate Skew-Elliptical Distribution," Papers 2108.04019, arXiv.org.
    16. Schwaab, Bernd & Lucas, André & Zhang, Xin, 2013. "Conditional and joint credit risk," Working Paper Series 1621, European Central Bank.
    17. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    18. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    19. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    20. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.

    More about this item

    Keywords

    copula; multivariate distribution; tail dependency; risk aggregation; economic capital;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boj:bojwps:13-e-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bank of Japan (email available below). General contact details of provider: https://edirc.repec.org/data/bojgvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.