IDEAS home Printed from https://ideas.repec.org/p/bay/rdwiwi/706.html
   My bibliography  Save this paper

Reducing Asset Weights' Volatility by Importance Sampling in Stochastic Credit Portfolio Optimization

Author

Listed:
  • Tilke, Stephan

Abstract

The objective of this paper is to study the effect of importance sampling (IS) techniques on stochastic credit portfolio optimization methods. I introduce a framework that leads to a reduction of volatility of resulting optimal portfolio asset weights. Performance of the method is documented in terms of implementation simplicity and accuracy. It is shown that the incorporated methods make solutions more precise given a limited computer performance by means of a reduced size of the initially necessary optimization model. For a presented example variance reduction of risk measures and asset weights by a factor of at least 350 was achieved. I finally outline how results can be mapped into business practice by utilizing readily available software such as RiskMetrics� CreditManager as basis for constructing a portfolio optimization model that is enhanced by means of IS. Dieser Beitrag soll die Auswirkung der Anwendung von Importance Sampling (IS) Techniken in der stochastischen Kreditportfoliooptimierung aufzeigen. Es wird ein Modellaufbau vorgestellt, der zu einer deutlichen Reduktion der Volatilität der Wertpapieranteilsgewichte führt. Durch eine Darstellung der verhältnismäßig einfachen Berücksichtigung der Importance Sampling Technik im Optimierungsverfahren sowie durch ein empirisches Beispiel wird die Leistungsfähigkeit der Methode dargelegt. In diesem Anwendungsbeispiel kann die Varianz der Schätzer sowohl für die Risikomaße als auch für die optimalen Anteilsgewichte um einen Faktor von mindestens 350 reduziert werden. Es wird somit gezeigt, dass die hier vorgestellte Methode durch eine Reduktion der Größe des ursprünglich notwendigen Optimierungs-problems die Genauigkeit von optimalen Lösungen erhöht, wenn nur eine begrenzte Rechnerleistung zur Verfügung steht. Abschließend wird dargelegt, wie die Lösungsansätze in der Praxis durch eine Ankopplung an existierende Softwarelösungen im Bankbetrieb umgesetzt werden können. Hierzu wird ein Vorgehen skizziert, das auf den Ergebnissen des Programms CreditManager von RiskMetrics ein Portfoliooptimierungsmodell aufbaut. Dieses wird um eine Importance Sampling Technik erweitert.

Suggested Citation

  • Tilke, Stephan, 2006. "Reducing Asset Weights' Volatility by Importance Sampling in Stochastic Credit Portfolio Optimization," University of Regensburg Working Papers in Business, Economics and Management Information Systems 417, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:706
    as

    Download full text from publisher

    File URL: https://epub.uni-regensburg.de/4533/1/paper_IS_3.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    3. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iscoe, Ian & Kreinin, Alexander & Mausser, Helmut & Romanko, Oleksandr, 2012. "Portfolio credit-risk optimization," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1604-1615.

    More about this item

    Keywords

    Kreditrisiko ; Stochastische Optimierung; Varianzreduktion ; CVaR; CVaR ; credit risk ; stochastic portfolio optimization ; importance sampling ; CreditMetrics ; CreditManager;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:706. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gernot Deinzer). General contact details of provider: http://edirc.repec.org/data/wfregde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.