IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0503473.html
   My bibliography  Save this paper

Characterization of arbitrage-free markets

Author

Listed:
  • Eva Strasser

Abstract

The present paper deals with the characterization of no-arbitrage properties of a continuous semimartingale. The first main result, Theorem \refMainTheoremCharNA, extends the no-arbitrage criterion by Levental and Skorohod [Ann. Appl. Probab. 5 (1995) 906-925] from diffusion processes to arbitrary continuous semimartingales. The second main result, Theorem 2.4, is a characterization of a weaker notion of no-arbitrage in terms of the existence of supermartingale densities. The pertaining weaker notion of no-arbitrage is equivalent to the absence of immediate arbitrage opportunities, a concept introduced by Delbaen and Schachermayer [Ann. Appl. Probab. 5 (1995) 926-945]. Both results are stated in terms of conditions for any semimartingales starting at arbitrary stopping times \sigma. The necessity parts of both results are known for the stopping time \sigma=0 from Delbaen and Schachermayer [Ann. Appl. Probab. 5 (1995) 926-945]. The contribution of the present paper is the proofs of the corresponding sufficiency parts.

Suggested Citation

  • Eva Strasser, 2005. "Characterization of arbitrage-free markets," Papers math/0503473, arXiv.org.
  • Handle: RePEc:arx:papers:math/0503473
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0503473
    File Function: Latest version
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hardy Hulley & Martin Schweizer, 2010. "M6 - On Minimal Market Models and Minimal Martingale Measures," Research Paper Series 280, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Claudio Fontana & Wolfgang J. Runggaldier, 2012. "Diffusion-based models for financial markets without martingale measures," Papers 1209.4449, arXiv.org, revised Feb 2013.
    3. Claudio Fontana, 2013. "Weak and strong no-arbitrage conditions for continuous financial markets," Papers 1302.7192, arXiv.org, revised May 2014.
    4. Claudio Fontana, 2013. "No-arbitrage conditions and absolutely continuous changes of measure," Papers 1312.4296, arXiv.org, revised Mar 2014.
    5. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, january-d.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0503473. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.