Computing Evolutionarily Stable Strategies in Multiplayer Games
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- P. Herings & Ronald Peeters, 2010.
"Homotopy methods to compute equilibria in game theory,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
- Herings, P.J.J. & Peeters, R.J.A.P., 2006. "Homotopy methods to compute equilibria in game theory," Research Memorandum 046, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, December.
- Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
- Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
- Yiyin Cao & Chuangyin Dang, 2025. "A Characterization of Reny's Weakly Sequentially Rational Equilibrium through $\varepsilon$-Perfect $\gamma$-Weakly Sequentially Rational Equilibrium," Papers 2505.19496, arXiv.org.
- Sam Ganzfried & Austin Nowak & Joannier Pinales, 2018. "Successful Nash Equilibrium Agent for a 3-Player Imperfect-Information Game," Papers 1804.04789, arXiv.org.
- Thompson, David R.M. & Leyton-Brown, Kevin, 2017. "Computational analysis of perfect-information position auctions," Games and Economic Behavior, Elsevier, vol. 102(C), pages 583-623.
- Sam Ganzfried & Conner Laughlin & Charles Morefield, 2019. "Parallel Algorithm for Approximating Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning," Papers 1910.00193, arXiv.org, revised Mar 2020.
- Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
- Sam Ganzfried & Austin Nowak & Joannier Pinales, 2018. "Successful Nash Equilibrium Agent for a Three-Player Imperfect-Information Game," Games, MDPI, vol. 9(2), pages 1-8, June.
- Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
- Sam Ganzfried, 2018. "Optimization-Based Algorithm for Evolutionarily Stable Strategies against Pure Mutations," Papers 1803.00607, arXiv.org, revised Jan 2019.
- Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015.
"An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope,"
Other publications TiSEM
07b7a0e7-f814-4ec2-a3a7-e, Tilburg University, School of Economics and Management.
- Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015. "An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope," Discussion Paper 2015-019, Tilburg University, Center for Economic Research.
- Herings, P. Jean-Jacques & Zhan, Yang, 2021. "The computation of pairwise stable networks," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
- Ruchira Datta, 2010. "Finding all Nash equilibria of a finite game using polynomial algebra," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 55-96, January.
- Amin Dehghanian & Yujia Xie & Nicoleta Serban, 2024. "Identifying Socially Optimal Equilibria Using Combinatorial Properties of Nash Equilibria in Bimatrix Games," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1261-1286, September.
- Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
- Jiang, Albert Xin & Leyton-Brown, Kevin & Bhat, Navin A.R., 2011. "Action-Graph Games," Games and Economic Behavior, Elsevier, vol. 71(1), pages 141-173, January.
- Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
- Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 377-396, March.
- Anne Balthasar, 2010. "Equilibrium tracing in strategic-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 39-54, January.
- Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
- Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2025-12-15 (Computational Economics)
- NEP-EVO-2025-12-15 (Evolutionary Economics)
- NEP-GTH-2025-12-15 (Game Theory)
- NEP-SPO-2025-12-15 (Sports and Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.20859. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2511.20859.html