IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.00607.html
   My bibliography  Save this paper

Optimization-Based Algorithm for Evolutionarily Stable Strategies against Pure Mutations

Author

Listed:
  • Sam Ganzfried

Abstract

Evolutionarily stable strategy (ESS) is an important solution concept in game theory which has been applied frequently to biological models. Informally an ESS is a strategy that if followed by the population cannot be taken over by a mutation strategy that is initially rare. Finding such a strategy has been shown to be difficult from a theoretical complexity perspective. We present an algorithm for the case where mutations are restricted to pure strategies, and present experiments on several game classes including random and a recently-proposed cancer model. Our algorithm is based on a mixed-integer non-convex feasibility program formulation, which constitutes the first general optimization formulation for this problem. It turns out that the vast majority of the games included in the experiments contain ESS with small support, and our algorithm is outperformed by a support-enumeration based approach. However we suspect our algorithm may be useful in the future as games are studied that have ESS with potentially larger and unknown support size.

Suggested Citation

  • Sam Ganzfried, 2018. "Optimization-Based Algorithm for Evolutionarily Stable Strategies against Pure Mutations," Papers 1803.00607, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1803.00607
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.00607
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergiu Hart & Yosef Rinott & Benjamin Weiss, 2007. "Evolutionarily Stable Strategies of Random Games, and the Vertices of Random Polygons," Levine's Bibliography 321307000000000781, UCLA Department of Economics.
    2. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    3. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
    4. Elena Hurlbut & Ethan Ortega & Igor V. Erovenko & Jonathan T. Rowell, 2018. "Game Theoretical Model of Cancer Dynamics with Four Cell Phenotypes," Games, MDPI, vol. 9(3), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
    2. Sam Ganzfried & Austin Nowak & Joannier Pinales, 2018. "Successful Nash Equilibrium Agent for a 3-Player Imperfect-Information Game," Papers 1804.04789, arXiv.org.
    3. Thompson, David R.M. & Leyton-Brown, Kevin, 2017. "Computational analysis of perfect-information position auctions," Games and Economic Behavior, Elsevier, vol. 102(C), pages 583-623.
    4. Sam Ganzfried & Conner Laughlin & Charles Morefield, 2019. "Parallel Algorithm for Approximating Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning," Papers 1910.00193, arXiv.org, revised Mar 2020.
    5. Sam Ganzfried & Austin Nowak & Joannier Pinales, 2018. "Successful Nash Equilibrium Agent for a Three-Player Imperfect-Information Game," Games, MDPI, vol. 9(2), pages 1-8, June.
    6. Jiang, Albert Xin & Leyton-Brown, Kevin & Bhat, Navin A.R., 2011. "Action-Graph Games," Games and Economic Behavior, Elsevier, vol. 71(1), pages 141-173, January.
    7. Li You & Maximilian von Knobloch & Teresa Lopez & Vanessa Peschen & Sidney Radcliffe & Praveen Koshy Sam & Frank Thuijsman & Kateřina Staňková & Joel S. Brown, 2019. "Including Blood Vasculature into a Game-Theoretic Model of Cancer Dynamics," Games, MDPI, vol. 10(1), pages 1-22, March.
    8. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    9. Hadi Charkhgard & Martin Savelsbergh & Masoud Talebian, 2018. "Nondominated Nash points: application of biobjective mixed integer programming," 4OR, Springer, vol. 16(2), pages 151-171, June.
    10. Godinho, Pedro & Dias, Joana, 2013. "Two-player simultaneous location game: Preferential rights and overbidding," European Journal of Operational Research, Elsevier, vol. 229(3), pages 663-672.
    11. Hanyu Li & Wenhan Huang & Zhijian Duan & David Henry Mguni & Kun Shao & Jun Wang & Xiaotie Deng, 2023. "A survey on algorithms for Nash equilibria in finite normal-form games," Papers 2312.11063, arXiv.org.
    12. Murray, Timothy & Garg, Jugal & Nagi, Rakesh, 2021. "Limited-trust equilibria," European Journal of Operational Research, Elsevier, vol. 289(1), pages 364-380.
    13. Ghaninejad, Mousa, 2020. "عرضه، تقاضا، و پیشنهاد قیمت در بازار برق ایران [Supply, Demand, and Bidding in Iran’s Electricity Market]," MPRA Paper 105340, University Library of Munich, Germany.
    14. Sam Ganzfried, 2020. "Fast Complete Algorithm for Multiplayer Nash Equilibrium," Papers 2002.04734, arXiv.org, revised Jan 2023.
    15. Govindan, Srihari & Wilson, Robert, 2009. "Global Newton Method for stochastic games," Journal of Economic Theory, Elsevier, vol. 144(1), pages 414-421, January.
    16. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
    17. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
    18. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
    19. Cao, Ran & Coit, David W. & Hou, Wei & Yang, Yushu, 2020. "Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.00607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.