Scaling Conditional Autoencoders for Portfolio Optimization via Uncertainty-Aware Factor Selection
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Stefano Giglio & Dacheng Xiu, 2021. "Asset Pricing with Omitted Factors," Journal of Political Economy, University of Chicago Press, vol. 129(7), pages 1947-1990.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Tiantian Tu, 2025. "Bridging Short- and Long-Term Dependencies: A CNN-Transformer Hybrid for Financial Time Series Forecasting," Papers 2504.19309, arXiv.org.
- Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
- d'Aspremont, Alexandre & Ben Arous, Simon & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2025.
"Satellites turn “concrete”: Tracking cement with satellite data and neural networks,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Alexandre Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2023. "Satellites Turn Concrete : Tracking Cement with Satellite Data and Neural Networks," Working papers 916, Banque de France.
- Alexandre d'Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2024. "Satellites turn “concrete”: Tracking cement with satellite data and neural networks," Post-Print hal-05104995, HAL.
- d’Aspremont, Alexandre & Arous, Simon Ben & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2024. "Satellites turn “concrete”: tracking cement with satellite data and neural networks," Working Paper Series 2900, European Central Bank.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(3), pages 1145-1162.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Alroomi, Azzam & Karamatzanis, Georgios & Nikolopoulos, Konstantinos & Tilba, Anna & Xiao, Shujun, 2022. "Fathoming empirical forecasting competitions’ winners," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1519-1525.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Jiangtao Duan & Jushan Bai & Xu Han, 2025. "Taxonomy and Estimation of Multiple Breakpoints in High-Dimensional Factor Models," Papers 2503.06645, arXiv.org, revised Aug 2025.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda & Melin, Olena, 2023. "Identification-robust beta pricing, spanning, mimicking portfolios, and the benchmark neutrality of catastrophe bonds," Journal of Econometrics, Elsevier, vol. 236(1).
- Yuan Liao & Viktor Todorov, 2024. "Changes in the span of systematic risk exposures," Quantitative Economics, Econometric Society, vol. 15(3), pages 817-847, July.
- Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
- Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
- Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
- Cynthia M. Gong & Di Luo & Huainan Zhao, 2021. "Liquidity risk and the beta premium," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(4), pages 789-814, December.
- Fabio Franceschini, 2025. "The Innovation Long-Run Risk Component," Working Papers wp1215, Dipartimento Scienze Economiche, Universita' di Bologna.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2025-12-01 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.17462. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2511.17462.html