IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.11761.html
   My bibliography  Save this paper

Cost Transparency of Enterprise AI Adoption

Author

Listed:
  • Soogand Alavi
  • Salar Nozari
  • Andrea Luangrath

Abstract

Recent advances in large language models (LLMs) have dramatically improved performance on a wide range of tasks, driving rapid enterprise adoption. Yet, the cost of adopting these AI services is understudied. Unlike traditional software licensing in which costs are predictable before usage, commercial LLM services charge per token of input text in addition to generated output tokens. Crucially, while firms can control the input, they have limited control over output tokens, which are effectively set by generation dynamics outside of business control. This research shows that subtle shifts in linguistic style can systematically alter the number of output tokens without impacting response quality. Using an experiment with OpenAI's API, this study reveals that non-polite prompts significantly increase output tokens leading to higher enterprise costs and additional revenue for OpenAI. Politeness is merely one instance of a broader phenomenon in which linguistic structure can drive unpredictable cost variation. For enterprises integrating LLM into applications, this unpredictability complicates budgeting and undermines transparency in business-to-business contexts. By demonstrating how end-user behavior links to enterprise costs through output token counts, this work highlights the opacity of current pricing models and calls for new approaches to ensure predictable and transparent adoption of LLM services.

Suggested Citation

  • Soogand Alavi & Salar Nozari & Andrea Luangrath, 2025. "Cost Transparency of Enterprise AI Adoption," Papers 2511.11761, arXiv.org.
  • Handle: RePEc:arx:papers:2511.11761
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.11761
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.11761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.