IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.04996.html

Characterizing the ELS Values with Fixed-Population Invariance Axioms

Author

Listed:
  • Yukihiko Funaki
  • Yukio Koriyama
  • Satoshi Nakada
  • Yuki Tamura

Abstract

We study efficient, linear, and symmetric (ELS) values, a central family of allocation rules for cooperative games with transferable-utility (TU-games) that includes the Shapley value, the CIS value, and the ENSC value. We first show that every ELS value can be written as the Shapley value of a suitably transformed TU-game. We then introduce three types of invariance axioms for fixed player populations. The first type consists of composition axioms, and the second type is active-player consistency. Each of these two types yields a characterization of a subclass of the ELS values that contains the family of least-square values. Finally, the third type is nullified-game consistency: we define three such axioms, and each axiom yields a characterization of one of the Shapley, CIS, and ENSC values.

Suggested Citation

  • Yukihiko Funaki & Yukio Koriyama & Satoshi Nakada & Yuki Tamura, 2025. "Characterizing the ELS Values with Fixed-Population Invariance Axioms," Papers 2511.04996, arXiv.org.
  • Handle: RePEc:arx:papers:2511.04996
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.04996
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruiz, Luis M & Valenciano, Federico & Zarzuelo, Jose M, 1996. "The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games Based on the Excess Vector," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 113-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeguang Cui & Erfang Shan & Wenrong Lyu, 2024. "Differential marginality, inessential games and convex combinations of values," Theory and Decision, Springer, vol. 96(3), pages 463-475, May.
    2. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    3. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    4. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    5. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    6. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    7. Dongshuang Hou & Weibin Han & Genjiu Xu & Yifan Feng, 2024. "A generalization of the CIS value for cooperative cost games," 4OR, Springer, vol. 22(1), pages 17-30, March.
    8. Borkotokey, Surajit & Kumar, Rajnish & Sarangi, Sudipta, 2015. "A solution concept for network games: The role of multilateral interactions," European Journal of Operational Research, Elsevier, vol. 243(3), pages 912-920.
    9. Aguiar, Victor H. & Pongou, Roland & Tondji, Jean-Baptiste, 2018. "A non-parametric approach to testing the axioms of the Shapley value with limited data," Games and Economic Behavior, Elsevier, vol. 111(C), pages 41-63.
    10. repec:ehu:ikerla:34464 is not listed on IDEAS
    11. Walter Briec & Marc Dubois & Stéphane Mussard, 2025. "Atkinson–Shapley rules for TU-games: on the trade-off between efficiency and inequality," Theory and Decision, Springer, vol. 98(4), pages 489-518, June.
    12. L. Hernández-Lamoneda & F. Sánchez-Sánchez, 2010. "Rankings and values for team games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 319-350, July.
    13. Radzik, Tadeusz & Driessen, Theo, 2013. "On a family of values for TU-games generalizing the Shapley value," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 105-111.
    14. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    15. Liu, Zhi & Zheng, Xiao-Xue & Li, Deng-Feng & Liao, Chen-Nan & Sheu, Jiuh-Biing, 2021. "A novel cooperative game-based method to coordinate a sustainable supply chain under psychological uncertainty in fairness concerns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    16. Liu, Jia-Cai & Sheu, Jiuh-Biing & Li, Deng-Feng & Dai, Yong-Wu, 2021. "Collaborative profit allocation schemes for logistics enterprise coalitions with incomplete information," Omega, Elsevier, vol. 101(C).
    17. L. Hernández-Lamoneda & F. Sánchez-Sánchez, 2017. "Linear symmetric rankings for TU-games," Theory and Decision, Springer, vol. 82(4), pages 461-484, April.
    18. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    19. repec:ehu:ikerla:6503 is not listed on IDEAS
    20. Bendel, Dan & Haviv, Moshe, 2018. "Cooperation and sharing costs in a tandem queueing network," European Journal of Operational Research, Elsevier, vol. 271(3), pages 926-933.
    21. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Lev, Benjamin, 2021. "Willingness-to-cede behaviour in sustainable supply chain coordination," International Journal of Production Economics, Elsevier, vol. 240(C).
    22. Jiacai Liu & Wenjian Zhao, 2016. "Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games," IJERPH, MDPI, vol. 13(11), pages 1-12, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.04996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.