IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.04996.html
   My bibliography  Save this paper

Characterizing the ELS Values with Fixed-Population Invariance Axioms

Author

Listed:
  • Yukihiko Funaki
  • Yukio Koriyama
  • Satoshi Nakada
  • Yuki Tamura

Abstract

We study efficient, linear, and symmetric (ELS) values, a central family of allocation rules for cooperative games with transferable-utility (TU-games) that includes the Shapley value, the CIS value, and the ENSC value. We first show that every ELS value can be written as the Shapley value of a suitably transformed TU-game. We then introduce three types of invariance axioms for fixed player populations. The first type consists of composition axioms, and the second type is active-player consistency. Each of these two types yields a characterization of a subclass of the ELS values that contains the family of least-square values. Finally, the third type is nullified-game consistency: we define three such axioms, and each axiom yields a characterization of one of the Shapley, CIS, and ENSC values.

Suggested Citation

  • Yukihiko Funaki & Yukio Koriyama & Satoshi Nakada & Yuki Tamura, 2025. "Characterizing the ELS Values with Fixed-Population Invariance Axioms," Papers 2511.04996, arXiv.org.
  • Handle: RePEc:arx:papers:2511.04996
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.04996
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.04996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.