IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.15937.html
   My bibliography  Save this paper

Tail-Safe Stochastic-Control SPX-VIX Hedging: A White-Box Bridge Between AI Sensitivities and Arbitrage-Free Market Dynamics

Author

Listed:
  • Jian'an Zhang

Abstract

We present a white-box, risk-sensitive framework for jointly hedging SPX and VIX exposures under transaction costs and regime shifts. The approach couples an arbitrage-free market teacher with a control layer that enforces safety as constraints. On the market side, we integrate an SSVI-based implied-volatility surface and a Cboe-compliant VIX computation (including wing pruning and 30-day interpolation), and connect prices to dynamics via a clipped, convexity-preserving Dupire local-volatility extractor. On the control side, we pose hedging as a small quadratic program with control-barrier-function (CBF) boxes for inventory, rate, and tail risk; a sufficient-descent execution gate that trades only when risk drop justifies cost; and three targeted tail-safety upgrades: a correlation/expiry-aware VIX weight, guarded no-trade bands, and expiry-aware micro-trade thresholds with cooldown. We prove existence/uniqueness and KKT regularity of the per-step QP, forward invariance of safety sets, one-step risk descent when the gate opens, and no chattering with bounded trade rates. For the dynamics layer, we establish positivity and second-order consistency of the discrete Dupire estimator and give an index-coherence bound linking the teacher VIX to a CIR-style proxy with explicit quadrature and projection errors. In a reproducible synthetic environment mirroring exchange rules and execution frictions, the controller reduces expected shortfall while suppressing nuisance turnover, and the teacher-surface construction keeps index-level residuals small and stable.

Suggested Citation

  • Jian'an Zhang, 2025. "Tail-Safe Stochastic-Control SPX-VIX Hedging: A White-Box Bridge Between AI Sensitivities and Arbitrage-Free Market Dynamics," Papers 2510.15937, arXiv.org.
  • Handle: RePEc:arx:papers:2510.15937
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.15937
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    2. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    3. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    4. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    5. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    6. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    7. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    8. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    9. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Post-Print hal-04373380, HAL.
    14. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    15. Hasbrouck, Joel, 2007. "Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading," OUP Catalogue, Oxford University Press, number 9780195301649.
    16. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    17. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    18. Brian Ning & Sebastian Jaimungal & Xiaorong Zhang & Maxime Bergeron, 2021. "Arbitrage-Free Implied Volatility Surface Generation with Variational Autoencoders," Papers 2108.04941, arXiv.org, revised Jan 2022.
    19. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian'an Zhang, 2025. "Risk-Sensitive Option Market Making with Arbitrage-Free eSSVI Surfaces: A Constrained RL and Stochastic Control Bridge," Papers 2510.04569, arXiv.org.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    4. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    5. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    6. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    7. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Thaddeus Neururer & George Papadakis & Edward J. Riedl, 2016. "Tests of investor learning models using earnings innovations and implied volatilities," Review of Accounting Studies, Springer, vol. 21(2), pages 400-437, June.
    10. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    13. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    14. Giulia Di Nunno & Kęstutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From Constant to Rough: A Survey of Continuous Volatility Modeling," Mathematics, MDPI, vol. 11(19), pages 1-35, October.
    15. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    16. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    17. Ofelia Bonesini & Emilio Ferrucci & Ioannis Gasteratos & Antoine Jacquier, 2024. "Rough differential equations for volatility," Papers 2412.21192, arXiv.org.
    18. Huang, Darien & Schlag, Christian & Shaliastovich, Ivan & Thimme, Julian, 2018. "Volatility-of-volatility risk," SAFE Working Paper Series 210, Leibniz Institute for Financial Research SAFE.
    19. Yufeng Shi & Bin Teng & Sicong Wang, 2025. "Option pricing mechanisms driven by backward stochastic differential equations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-19, December.
    20. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 27-48, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.15937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.