IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.04569.html
   My bibliography  Save this paper

Risk-Sensitive Option Market Making with Arbitrage-Free eSSVI Surfaces: A Constrained RL and Stochastic Control Bridge

Author

Listed:
  • Jian'an Zhang

Abstract

We formulate option market making as a constrained, risk-sensitive control problem that unifies execution, hedging, and arbitrage-free implied-volatility surfaces inside a single learning loop. A fully differentiable eSSVI layer enforces static no-arbitrage conditions (butterfly and calendar) while the policy controls half-spreads, hedge intensity, and structured surface deformations (state-dependent rho-shift and psi-scale). Executions are intensity-driven and respond monotonically to spreads and relative mispricing; tail risk is shaped with a differentiable CVaR objective via the Rockafellar--Uryasev program. We provide theory for (i) grid-consistency and rates for butterfly/calendar surrogates, (ii) a primal--dual grounding of a learnable dual action acting as a state-dependent Lagrange multiplier, (iii) differentiable CVaR estimators with mixed pathwise and likelihood-ratio gradients and epi-convergence to the nonsmooth objective, (iv) an eSSVI wing-growth bound aligned with Lee's moment constraints, and (v) policy-gradient validity under smooth surrogates. In simulation (Heston fallback; ABIDES-ready), the agent attains positive adjusted P\&L on most intraday segments while keeping calendar violations at numerical zero and butterfly violations at the numerical floor; ex-post tails remain realistic and can be tuned through the CVaR weight. The five control heads admit clear economic semantics and analytic sensitivities, yielding a white-box learner that unifies pricing consistency and execution control in a reproducible pipeline.

Suggested Citation

  • Jian'an Zhang, 2025. "Risk-Sensitive Option Market Making with Arbitrage-Free eSSVI Surfaces: A Constrained RL and Stochastic Control Bridge," Papers 2510.04569, arXiv.org.
  • Handle: RePEc:arx:papers:2510.04569
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.04569
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    2. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    3. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    5. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    6. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    7. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    9. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    12. Ronald A. Howard & James E. Matheson, 1972. "Risk-Sensitive Markov Decision Processes," Management Science, INFORMS, vol. 18(7), pages 356-369, March.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    15. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    16. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    17. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    18. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    19. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    20. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    21. Rama Cont & Milena Vuletić, 2023. "Simulation of Arbitrage-Free Implied Volatility Surfaces," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(2), pages 94-121, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Jian'an Zhang, 2025. "Tail-Safe Stochastic-Control SPX-VIX Hedging: A White-Box Bridge Between AI Sensitivities and Arbitrage-Free Market Dynamics," Papers 2510.15937, arXiv.org.
    3. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    4. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    5. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    6. Przemys{l}aw Rola, 2025. "Boltzmann Price: Toward Understanding the Fair Price in High-Frequency Markets," Papers 2507.09734, arXiv.org.
    7. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    8. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    9. Atmaz, Adem & Basak, Suleyman, 2019. "Option prices and costly short-selling," Journal of Financial Economics, Elsevier, vol. 134(1), pages 1-28.
    10. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    11. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    12. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    13. H. Fink & S. Geissel & J. Sass & F. T. Seifried, 2019. "Implied risk aversion: an alternative rating system for retail structured products," Review of Derivatives Research, Springer, vol. 22(3), pages 357-387, October.
    14. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    15. Shaw Dalen, 2025. "Toward Black Scholes for Prediction Markets: A Unified Kernel and Market Maker's Handbook," Papers 2510.15205, arXiv.org.
    16. Etienne Chevalier & M’hamed Gaïgi & Vathana Ly Vath & Mohamed Mnif, 2017. "Optimal Market Dealing Under Constraints," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 313-335, April.
    17. Baron Law & Frederi Viens, 2019. "Market Making under a Weakly Consistent Limit Order Book Model," Papers 1903.07222, arXiv.org, revised Jan 2020.
    18. Yufeng Shi & Bin Teng & Sicong Wang, 2025. "Option pricing mechanisms driven by backward stochastic differential equations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-19, December.
    19. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    20. Domagoj Demeterfi & Kathrin Glau & Linus Wunderlich, 2025. "Function approximations for counterparty credit exposure calculations," Papers 2507.09004, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.04569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.