IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.15110.html
   My bibliography  Save this paper

Deep Hawkes Process for High-Frequency Market Making

Author

Listed:
  • Pankaj Kumar

Abstract

High-frequency market making is a liquidity-providing trading strategy that simultaneously generates many bids and asks for a security at ultra-low latency while maintaining a relatively neutral position. The strategy makes a profit from the bid-ask spread for every buy and sell transaction, against the risk of adverse selection, uncertain execution and inventory risk. We design realistic simulations of limit order markets and develop a high-frequency market making strategy in which agents process order book information to post the optimal price, order type and execution time. By introducing the Deep Hawkes process to the high-frequency market making strategy, we allow a feedback loop to be created between order arrival and the state of the limit order book, together with self- and cross-excitation effects. Our high-frequency market making strategy accounts for the cancellation of orders that influence order queue position, profitability, bid-ask spread and the value of the order. The experimental results show that our trading agent outperforms the baseline strategy, which uses a probability density estimate of the fundamental price. We investigate the effect of cancellations on market quality and the agent's profitability. We validate how closely the simulation framework approximates reality by reproducing stylised facts from the empirical analysis of the simulated order book data.

Suggested Citation

  • Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
  • Handle: RePEc:arx:papers:2109.15110
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.15110
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
    2. Sanmay Das, 2005. "A learning market-maker in the Glosten-Milgrom model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 169-180.
    3. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    4. Sandas, Patrik, 2001. "Adverse Selection and Competitive Market Making: Empirical Evidence from a Limit Order Market," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 705-734.
    5. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    6. Federico Musciotto & Luca Marotta & Jyrki Piilo & Rosario N. Mantegna, 2018. "Long-term ecology of investors in a financial market," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-12, December.
    7. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    8. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Paulin, James & Calinescu, Anisoara & Wooldridge, Michael, 2019. "Understanding flash crash contagion and systemic risk: A micro–macro agent-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 200-229.
    11. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    12. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    13. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    14. Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
    15. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    16. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    17. G.-H. Mu & W. Chen & J. Kertész & W.-X. Zhou, 2009. "Preferred numbers and the distributions of trade sizes and trading volumes in the Chinese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(1), pages 145-152, March.
    18. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    19. Mankad, Shawn & Michailidis, George, 2013. "Discovering the ecosystem of an electronic financial market with a dynamic machine-learning method," Algorithmic Finance, IOS Press, vol. 2(2), pages 151-165.
    20. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    21. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    22. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    23. Xuefeng Gao & Xiang Zhou & Lingjiong Zhu, 2018. "Transform analysis for Hawkes processes with applications in dark pool trading," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 265-282, February.
    24. Kaj Nyström & Sidi Mohamed Ould Aly & Changyong Zhang, 2014. "Market Making And Portfolio Liquidation Under Uncertainty," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1-33.
    25. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    26. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    27. O'Hara, Maureen & Oldfield, George S., 1986. "The Microeconomics of Market Making," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(4), pages 361-376, December.
    28. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    29. Daigo Tashiro & Hiroyasu Matsushima & Kiyoshi Izumi & Hiroki Sakaji, 2019. "Encoding of high-frequency order information and prediction of short-term stock price by deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1499-1506, September.
    30. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    31. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    32. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    33. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    34. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    35. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2017. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 999-1020, July.
    36. Purba Mukerji & Christine Chung & Timothy Walsh & Bo Xiong, 2019. "The Impact of Algorithmic Trading in a Simulated Asset Market," JRFM, MDPI, vol. 12(2), pages 1-11, April.
    37. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    38. Federico Gonzalez & Mark Schervish, 2017. "Instantaneous order impact and high-frequency strategy optimization in limit order books," Papers 1707.01167, arXiv.org, revised Oct 2017.
    39. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    40. Yong Chao & Chen Yao & Mao Ye, 2019. "Why Discrete Price Fragments U.S. Stock Exchanges and Disperses Their Fee Structures," The Review of Financial Studies, Society for Financial Studies, vol. 32(3), pages 1068-1101.
    41. Frank McGroarty & Ash Booth & Enrico Gerding & V. L. Raju Chinthalapati, 2019. "High frequency trading strategies, market fragility and price spikes: an agent based model perspective," Annals of Operations Research, Springer, vol. 282(1), pages 217-244, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijian Shi & John Cartlidge, 2023. "Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid Methodology," Papers 2303.00080, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    2. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    3. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    4. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Endogenous Liquidity Crises," Post-Print hal-02567495, HAL.
    5. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    6. Peng Wu & Marcello Rambaldi & Jean-François Muzy & Emmanuel Bacry, 2021. "Queue-reactive Hawkes models for the order flow," Working Papers hal-02409073, HAL.
    7. Julius Bonart & Martin Gould, 2015. "Latency and liquidity provision in a limit order book," Papers 1511.04116, arXiv.org, revised Jun 2016.
    8. Bruno Gav{s}perov & Zvonko Kostanjv{c}ar, 2022. "Deep Reinforcement Learning for Market Making Under a Hawkes Process-Based Limit Order Book Model," Papers 2207.09951, arXiv.org.
    9. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    10. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Endogenous Liquidity Crises," Working Papers hal-02567495, HAL.
    11. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    12. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    13. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2019. "Endogenous Liquidity Crises," Papers 1912.00359, arXiv.org, revised Feb 2020.
    14. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    15. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    16. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    17. Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.
    18. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    19. Miko{l}aj Bi'nkowski & Charles-Albert Lehalle, 2018. "Endogeneous Dynamics of Intraday Liquidity," Papers 1811.03766, arXiv.org.
    20. Alexander Barzykin & Philippe Bergault & Olivier Guéant, 2023. "Algorithmic market making in dealer markets with hedging and market impact," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 41-79, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.15110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.