IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i9p1499-1506.html
   My bibliography  Save this article

Encoding of high-frequency order information and prediction of short-term stock price by deep learning

Author

Listed:
  • Daigo Tashiro
  • Hiroyasu Matsushima
  • Kiyoshi Izumi
  • Hiroki Sakaji

Abstract

Predicting the price trends of stocks based on deep learning and high-frequency data has been studied intensively in recent years. Especially, the limit order book which describes supply-demand balance of a market is used as the feature of a neural network; however these methods do not utilize the properties of market orders. On the other hand, the order-encoding method of our prior work can take advantage of these properties. In this paper, we apply some types of convolutional neural network architectures to order-based features to predict the direction of mid-price trends. The results show that smoothing filters which we propose to employ rather than embedding features of orders improve accuracy. Furthermore, inspection of the embedding layer and investment simulation are conducted to demonstrate the practicality and effectiveness of our model.

Suggested Citation

  • Daigo Tashiro & Hiroyasu Matsushima & Kiyoshi Izumi & Hiroki Sakaji, 2019. "Encoding of high-frequency order information and prediction of short-term stock price by deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1499-1506, September.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1499-1506
    DOI: 10.1080/14697688.2019.1622314
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1622314
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1622314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1499-1506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.