IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.05377.html
   My bibliography  Save this paper

Signed network models for portfolio optimization

Author

Listed:
  • Bibhas Adhikari

Abstract

In this work, we consider weighted signed network representations of financial markets derived from raw or denoised correlation matrices, and examine how negative edges can be exploited to reduce portfolio risk. We then propose a discrete optimization scheme that reduces the asset selection problem to a desired size by building a time series of signed networks based on asset returns. To benchmark our approach, we consider two standard allocation strategies: Markowitz's mean-variance optimization and the 1/N equally weighted portfolio. Both methods are applied on the reduced universe as well as on the full universe, using two datasets: (i) the Market Champions dataset, consisting of 21 major S&P500 companies over the 2020-2024 period, and (ii) a dataset of 199 assets comprising all S&P500 constituents with stock prices available and aligned with Google's data. Empirical results show that portfolios constructed via our signed network selection perform as good as those from classical Markowitz model and the equal-weight benchmark in most occasions.

Suggested Citation

  • Bibhas Adhikari, 2025. "Signed network models for portfolio optimization," Papers 2510.05377, arXiv.org.
  • Handle: RePEc:arx:papers:2510.05377
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.05377
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Matthew O. Jackson, 2014. "Networks in the Understanding of Economic Behaviors," Journal of Economic Perspectives, American Economic Association, vol. 28(4), pages 3-22, Fall.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    6. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    9. Munki Chung & Yongjae Lee & Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2022. "The effects of errors in means, variances, and correlations on the mean-variance framework," Quantitative Finance, Taylor & Francis Journals, vol. 22(10), pages 1893-1903, October.
    10. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    11. Figueiredo, Rosa & Frota, Yuri, 2014. "The maximum balanced subgraph of a signed graph: Applications and solution approaches," European Journal of Operational Research, Elsevier, vol. 236(2), pages 473-487.
    12. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    13. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    2. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    3. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    4. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
    5. Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
    6. Mengting Li & Qifa Xu & Cuixia Jiang & Yezheng Liu, 2024. "The role of long‐ and short‐run correlation networks in international portfolio selection," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3147-3176, July.
    7. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    8. Lan, Qiujun & Li, Haojie & Mi, Xianhua & Zhang, Chunyu, 2025. "Optimizing investment strategies: Harnessing the power of K-line complex networks," International Review of Economics & Finance, Elsevier, vol. 99(C).
    9. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02312186, HAL.
    10. Haiming Long & Ji Zhang & Nengyu Tang, 2017. "Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    11. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2025. "Mesoscopic structure of the stock market and portfolio optimization," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 20(2), pages 307-333, April.
    12. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    13. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    14. Michele Costola & Massimiliano Caporin, 2016. "Rational Learning For Risk-Averse Investors By Conditioning On Behavioral Choices," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-26, March.
    15. Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    16. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    18. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    19. Esparcia, Carlos & Díaz, Antonio, 2024. "The football world upside down: Traditional equities as an alternative for the new fan tokens? A portfolio optimization study," Research in International Business and Finance, Elsevier, vol. 71(C).
    20. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.05377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.