Decomposing Co-Movements in Matrix-Valued Time Series: A Pseudo-Structural Reduced-Rank Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017.
"A vector heterogeneous autoregressive index model for realized volatility measures,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
- Cubadda, G. & Guardabascio, B. & Hecq, A.W., 2015. "A Vector Heterogeneous Autoregressive Index model for realized volatility measures," Research Memorandum 033, Maastricht University, Graduate School of Business and Economics (GSBE).
- Gianluca Cubadda & Barbara Guardabascio & Alain Hecq, 2016. "A Vector Heterogeneous Autoregressive Index Model for Realized Volatily Measures," CEIS Research Paper 391, Tor Vergata University, CEIS, revised 23 Jul 2016.
- Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
- Ruey S. Tsay, 2024. "Matrix‐Variate Time Series Analysis: A Brief Review and Some New Developments," International Statistical Review, International Statistical Institute, vol. 92(2), pages 246-262, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alain Hecq & Ivan Ricardo & Ines Wilms, 2024. "Reduced-Rank Matrix Autoregressive Models: A Medium $N$ Approach," Papers 2407.07973, arXiv.org.
- Yicong Lin & André Lucas & Shiqi Ye, 2025. "Matrix-Valued Spatial Autoregressions with Dynamic and Robust Heterogeneous Spillovers," Tinbergen Institute Discussion Papers 25-042/III, Tinbergen Institute.
- S. Yaser Samadi & Wiranthe B. Herath, 2023. "Reduced-rank Envelope Vector Autoregressive Models," Papers 2309.12902, arXiv.org.
- Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
- Gianluca Cubadda, 2025.
"VAR Models with an Index Structure: A Survey with New Results,"
Econometrics, MDPI, vol. 13(4), pages 1-17, October.
- Gianluca Cubadda, 2024. "VAR models with an index structure: A survey with new results," Papers 2412.11278, arXiv.org, revised Sep 2025.
- Gianluca Cubadda, 2025. "VAR Models With An Index Structure: A Survey With New Results," CEIS Research Paper 611, Tor Vergata University, CEIS, revised 22 Sep 2025.
- Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
- Wei Zhang, 2024. "Bayesian Dynamic Factor Models for High-dimensional Matrix-valued Time Series," Papers 2409.08354, arXiv.org, revised Aug 2025.
- Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
- Zhiyun Fan & Xiaoyu Zhang & Di Wang, 2025. "A Hybrid Framework Combining Autoregression and Common Factors for Matrix Time Series," Papers 2503.05340, arXiv.org, revised Jan 2026.
- Stevenson Bolivar & Rong Chen & Yuefeng Han, 2025. "Threshold Tensor Factor Model in CP Form," Papers 2511.19796, arXiv.org.
- Gianluca Cubadda & Alain Hecq & Antonio Riccardo, 2018. "Forecasting Realized Volatility Measures with Multivariate and Univariate Models: The Case of The US Banking Sector," CEIS Research Paper 445, Tor Vergata University, CEIS, revised 30 Oct 2018.
- Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.
- Cubadda, Gianluca & Guardabascio, Barbara, 2019.
"Representation, estimation and forecasting of the multivariate index-augmented autoregressive model,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
- Gianluca Cubadda & Barbara Guardabascio, 2017. "Representation, Estimation and Forecasting of the Multivariate Index-Augmented Autoregressive Model," CEIS Research Paper 397, Tor Vergata University, CEIS, revised 13 Jul 2018.
- Wang, Di & Zheng, Yao & Li, Guodong, 2024. "High-dimensional low-rank tensor autoregressive time series modeling," Journal of Econometrics, Elsevier, vol. 238(1).
- Won-Tak Hong & Jiwon Lee & Eunju Hwang, 2020. "A Note on the Asymptotic Normality Theory of the Least Squares Estimates in Multivariate HAR-RV Models," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
- Xiyuan Liu & Lingxiao Wang & Jiahao Li & Khan Raqib Mahmud & Shuo Pang, 2025. "Enhancing Wildfire Detection via Trend Estimation Under Auto-Regression Errors," Mathematics, MDPI, vol. 13(7), pages 1-18, March.
- Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
- Caloia, Francesco Giuseppe & Cipollini, Andrea & Muzzioli, Silvia, 2018. "Asymmetric semi-volatility spillover effects in EMU stock markets," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 221-230.
- Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
- Cen, Zetai & Lam, Clifford, 2025. "Tensor time series imputation through tensor factor modelling," LSE Research Online Documents on Economics 127231, London School of Economics and Political Science, LSE Library.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.19911. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2509.19911.html