IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v92y2024i2p246-262.html
   My bibliography  Save this article

Matrix‐Variate Time Series Analysis: A Brief Review and Some New Developments

Author

Listed:
  • Ruey S. Tsay

Abstract

This paper briefly reviews the recent research in matrix‐variate time series analysis, discusses some new developments, especially for seasonal time series, and demonstrates some applications. A general matrix autoregressive moving‐average model is introduced. The paper narrates a simple approach for understanding the model, identifiability issues, and estimation. Real examples are used to illustrate the theory.

Suggested Citation

  • Ruey S. Tsay, 2024. "Matrix‐Variate Time Series Analysis: A Brief Review and Some New Developments," International Statistical Review, International Statistical Institute, vol. 92(2), pages 246-262, August.
  • Handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:246-262
    DOI: 10.1111/insr.12558
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12558
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
    2. Yuefeng Han & Rong Chen & Cun-Hui Zhang & Qiwei Yao, 2021. "Simultaneous Decorrelation of Matrix Time Series," Papers 2103.09411, arXiv.org, revised Oct 2022.
    3. Hao Wang & Mike West, 2009. "Bayesian analysis of matrix normal graphical models," Biometrika, Biometrika Trust, vol. 96(4), pages 821-834.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Billio & Roberto Casarin & Fausto Corradin & Antonio Peruzzi, 2025. "Bayesian Outlier Detection for Matrix-variate Models," Papers 2503.19515, arXiv.org.
    2. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    3. Chan Joshua & Doucet Arnaud & León-González Roberto & Strachan Rodney W., 2025. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 29(3), pages 265-300.
    4. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    5. Zhiyun Fan & Xiaoyu Zhang & Mingyang Chen & Di Wang, 2025. "Matrix Time Series Modeling: A Hybrid Framework Combining Autoregression and Common Factors," Papers 2503.05340, arXiv.org.
    6. Yang Ni & Peter Müller & Yitan Zhu & Yuan Ji, 2018. "Heterogeneous reciprocal graphical models," Biometrics, The International Biometric Society, vol. 74(2), pages 606-615, June.
    7. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    8. Matteo Barigozzi & Giuseppe Cavaliere & Graziano Moramarco, 2022. "Factor Network Autoregressions," Papers 2208.02925, arXiv.org, revised Apr 2025.
    9. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    10. Cheng Yu & Dong Li & Feiyu Jiang & Ke Zhu, 2023. "Matrix GARCH Model: Inference and Application," Papers 2306.05169, arXiv.org.
    11. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    12. Roberto Casarin, 2014. "A Note on Tractable State-Space Model for Symmetric Positive-Definite Matrices," Working Papers 2014:23, Department of Economics, University of Venice "Ca' Foscari".
    13. Monica Billio & Roberto Casarin & Matteo Iacopini & Sylvia Kaufmann, 2023. "Bayesian Dynamic Tensor Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 429-439, April.
    14. Hong‐Fan Zhang, 2024. "Additive autoregressive models for matrix valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(3), pages 398-420, May.
    15. Hecq, Alain & Ricardo, Ivan & Wilms, Ines, 2025. "Detecting cointegrating relations in non-stationary matrix-valued time series," Economics Letters, Elsevier, vol. 248(C).
    16. Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
    17. Andrea Bucci, 2025. "A Smooth Transition Autoregressive Model for Matrix-Variate Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 429-458, January.
    18. Pagnottoni, Paolo & Spelta, Alessandro, 2024. "Hedging global currency risk: A dynamic machine learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    19. Suprateek Kundu & Benjamin B. Risk, 2021. "Scalable Bayesian matrix normal graphical models for brain functional networks," Biometrics, The International Biometric Society, vol. 77(2), pages 439-450, June.
    20. Mike West, 2020. "Bayesian forecasting of multivariate time series: scalability, structure uncertainty and decisions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 1-31, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:246-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.