IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i2p439-450.html
   My bibliography  Save this article

Scalable Bayesian matrix normal graphical models for brain functional networks

Author

Listed:
  • Suprateek Kundu
  • Benjamin B. Risk

Abstract

Recently, there has been an explosive growth in graphical modeling approaches for estimating brain functional networks. In a detailed study, we show that surprisingly, standard graphical modeling approaches for fMRI data may not yield accurate estimates of the brain network due to the inability to suitably account for temporal correlations. We propose a novel Bayesian matrix normal graphical model that jointly models the temporal covariance and the brain network under a separable structure for the covariance to obtain improved estimates. The approach is implemented via an efficient optimization algorithm that computes the maximum‐a‐posteriori network estimates having desirable theoretical properties and which is scalable to high dimensions. The proposed method leads to substantial gains in network estimation accuracy compared to standard brain network modeling approaches as illustrated via extensive simulations. We apply the method to resting state fMRI data from the Human Connectome Project involving a large number of time scans and brain regions, to study the relationships between fluid intelligence and functional connectivity, where it is not computationally feasible to apply existing matrix normal graphical models. Our proposed approach led to the detection of differences in connectivity between high and low fluid intelligence groups, whereas these differences were less pronounced or absent using the graphical lasso.

Suggested Citation

  • Suprateek Kundu & Benjamin B. Risk, 2021. "Scalable Bayesian matrix normal graphical models for brain functional networks," Biometrics, The International Biometric Society, vol. 77(2), pages 439-450, June.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:439-450
    DOI: 10.1111/biom.13319
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13319
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hao Wang & Mike West, 2009. "Bayesian analysis of matrix normal graphical models," Biometrika, Biometrika Trust, vol. 96(4), pages 821-834.
    2. Chenlei Leng & Cheng Yong Tang, 2012. "Sparse Matrix Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1187-1200, September.
    3. Stefano Castruccio & Hernando Ombao & Marc G. Genton, 2018. "A scalable multi‐resolution spatio‐temporal model for brain activation and connectivity in fMRI data," Biometrics, The International Biometric Society, vol. 74(3), pages 823-833, September.
    4. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    5. Huitong Qiu & Fang Han & Han Liu & Brian Caffo, 2016. "Joint estimation of multiple graphical models from high dimensional time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 487-504, March.
    6. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    7. Ryan Warnick & Michele Guindani & Erik Erhardt & Elena Allen & Vince Calhoun & Marina Vannucci, 2018. "A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 134-151, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    2. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
    3. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    4. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    5. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    6. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    7. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    8. Yang Ni & Peter Müller & Yitan Zhu & Yuan Ji, 2018. "Heterogeneous reciprocal graphical models," Biometrics, The International Biometric Society, vol. 74(2), pages 606-615, June.
    9. Xiao Guo & Hai Zhang, 2020. "Sparse directed acyclic graphs incorporating the covariates," Statistical Papers, Springer, vol. 61(5), pages 2119-2148, October.
    10. Jarod Smith & Mohammad Arashi & Andriëtte Bekker, 2022. "Empowering differential networks using Bayesian analysis," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.
    11. Pircalabelu, Eugen & Claeskens, Gerda, 2021. "Linear manifold modeling and graph estimation based on multivariate functional data with different coarseness scales," LIDAM Discussion Papers ISBA 2021032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
    13. Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
    14. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    15. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Byrd, Michael & Nghiem, Linh H. & McGee, Monnie, 2021. "Bayesian regularization of Gaussian graphical models with measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    17. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    18. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    19. Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
    20. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:439-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.