IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235596.html
   My bibliography  Save this article

Analysis of Twitter data with the Bayesian fused graphical lasso

Author

Listed:
  • Mehran Aflakparast
  • Mathisca de Gunst
  • Wessel van Wieringen

Abstract

We propose a method to simplify textual Twitter data into understandable networks of terms that can signify important events and their possible changes over time. The method allows for common characteristics of the networks across time periods and each period can comprise multiple unknown sub-networks. The networks are described by Gaussian graphical models and their parameter values are estimated through a Bayesian approach with a fused lasso-type prior on the precision matrices of the underlying mixtures of the sub-models. A flexible data allocation scheme is at the heart of an MCMC algorithm to recover mean and covariance parameters of the mixture components. Several implementations of the outlined estimation procedure are studied and compared based on simulated data. The procedure with the highest predictive power is used for mining tweets regarding the 2009 Iranian presidential election.

Suggested Citation

  • Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
  • Handle: RePEc:plo:pone00:0235596
    DOI: 10.1371/journal.pone.0235596
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235596
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235596&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
    2. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    3. van Wieringen, Wessel N. & Peeters, Carel F.W., 2016. "Ridge estimation of inverse covariance matrices from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 284-303.
    4. Mehran Aflakparast & Mathisca de Gunst, 2019. "Data integrative Bayesian inference for mixtures of regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 941-962, August.
    5. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    6. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    7. Yunzhang Zhu & Xiaotong Shen & Wei Pan, 2014. "Structural Pursuit Over Multiple Undirected Graphs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1683-1696, December.
    8. Xiaotong Shen & Wei Pan & Yunzhang Zhu, 2012. "Likelihood-Based Selection and Sharp Parameter Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 223-232, March.
    9. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    2. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    3. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    4. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    5. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
    7. Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    8. Elin Shaddox & Francesco C. Stingo & Christine B. Peterson & Sean Jacobson & Charmion Cruickshank-Quinn & Katerina Kechris & Russell Bowler & Marina Vannucci, 2018. "A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 59-85, April.
    9. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    10. Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
    11. Yang Ni & Peter Müller & Yitan Zhu & Yuan Ji, 2018. "Heterogeneous reciprocal graphical models," Biometrics, The International Biometric Society, vol. 74(2), pages 606-615, June.
    12. Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    13. Christine B. Peterson & Nathan Osborne & Francesco C. Stingo & Pierrick Bourgeat & James D. Doecke & Marina Vannucci, 2020. "Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 76(4), pages 1120-1132, December.
    14. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    15. Zhixiang Lin & Tao Wang & Can Yang & Hongyu Zhao, 2017. "On joint estimation of Gaussian graphical models for spatial and temporal data," Biometrics, The International Biometric Society, vol. 73(3), pages 769-779, September.
    16. Yunzhang Zhu & Xiaotong Shen & Wei Pan, 2014. "Structural Pursuit Over Multiple Undirected Graphs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1683-1696, December.
    17. Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2021. "Conditional score matching for high-dimensional partial graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    18. Shan, Liang & Kim, Inyoung, 2018. "Joint estimation of multiple Gaussian graphical models across unbalanced classes," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 89-103.
    19. Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
    20. Jianyu Liu & Wei Sun & Yufeng Liu, 2019. "Joint skeleton estimation of multiple directed acyclic graphs for heterogeneous population," Biometrics, The International Biometric Society, vol. 75(1), pages 36-47, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.