IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2105-d626263.html
   My bibliography  Save this article

Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models

Author

Listed:
  • Claudia Angelini

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, CNR-Napoli, 80131 Naples, Italy)

  • Daniela De Canditiis

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, CNR-Roma, 00185 Rome, Italy)

  • Anna Plaksienko

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, CNR-Napoli, 80131 Naples, Italy
    Gran Sasso Science Institute, 67100 L’Aquila, Italy)

Abstract

In this paper, we consider the problem of estimating multiple Gaussian Graphical Models from high-dimensional datasets. We assume that these datasets are sampled from different distributions with the same conditional independence structure, but not the same precision matrix. We propose jewel , a joint data estimation method that uses a node-wise penalized regression approach. In particular, jewel uses a group Lasso penalty to simultaneously guarantee the resulting adjacency matrix’s symmetry and the graphs’ joint learning. We solve the minimization problem using the group descend algorithm and propose two procedures for estimating the regularization parameter. Furthermore, we establish the estimator’s consistency property. Finally, we illustrate our estimator’s performance through simulated and real data examples on gene regulatory networks.

Suggested Citation

  • Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2105-:d:626263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
    2. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
    3. Shang, Yilun, 2016. "On the likelihood of forests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 157-166.
    4. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    5. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    6. Shan, Liang & Kim, Inyoung, 2018. "Joint estimation of multiple Gaussian graphical models across unbalanced classes," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 89-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2022. "Jewel 2.0 : An Improved Joint Estimation Method for Multiple Gaussian Graphical Models," Mathematics, MDPI, vol. 10(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    2. Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2021. "Conditional score matching for high-dimensional partial graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    3. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    4. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    5. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    6. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
    8. Mingyang Ren & Sanguo Zhang & Qingzhao Zhang & Shuangge Ma, 2022. "Gaussian graphical model‐based heterogeneity analysis via penalized fusion," Biometrics, The International Biometric Society, vol. 78(2), pages 524-535, June.
    9. Zheng, Zemin & Shi, Haiyu & Li, Yang & Yuan, Hui, 2020. "Uniform joint screening for ultra-high dimensional graphical models," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    10. Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.
    11. Shan, Liang & Kim, Inyoung, 2018. "Joint estimation of multiple Gaussian graphical models across unbalanced classes," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 89-103.
    12. Young-Geun Choi & Seunghwan Lee & Donghyeon Yu, 2022. "An efficient parallel block coordinate descent algorithm for large-scale precision matrix estimation using graphics processing units," Computational Statistics, Springer, vol. 37(1), pages 419-443, March.
    13. Wang, Ke & Franks, Alexander & Oh, Sang-Yun, 2023. "Learning Gaussian graphical models with latent confounders," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    14. Jianyu Liu & Wei Sun & Yufeng Liu, 2019. "Joint skeleton estimation of multiple directed acyclic graphs for heterogeneous population," Biometrics, The International Biometric Society, vol. 75(1), pages 36-47, March.
    15. Kevin H. Lee & Qian Chen & Wayne S. DeSarbo & Lingzhou Xue, 2022. "Estimating Finite Mixtures of Ordinal Graphical Models," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 83-106, March.
    16. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    17. Banerjee, Sayantan & Akbani, Rehan & Baladandayuthapani, Veerabhadran, 2019. "Spectral clustering via sparse graph structure learning with application to proteomic signaling networks in cancer," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 46-69.
    18. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    19. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    20. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2105-:d:626263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.