IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1046-d1618791.html
   My bibliography  Save this article

Enhancing Wildfire Detection via Trend Estimation Under Auto-Regression Errors

Author

Listed:
  • Xiyuan Liu

    (Department of Mathematics and Statistics, Louisiana Tech University, Ruston, LA 71272, USA)

  • Lingxiao Wang

    (Department of Electrical Engineering, Louisiana Tech University, Ruston, LA 71272, USA)

  • Jiahao Li

    (Department of Mathematics and Statistics, Louisiana Tech University, Ruston, LA 71272, USA)

  • Khan Raqib Mahmud

    (Department of Computer Science, Louisiana Tech University, Ruston, LA 71272, USA)

  • Shuo Pang

    (Department of Electrical Engineering and Computer Science, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA)

Abstract

In recent years, global weather changes have underscored the importance of wildfire detection, particularly through Uncrewed Aircraft System (UAS)-based smoke detection using Deep Learning (DL) approaches. Among these, object detection algorithms like You Only Look Once version 7 (YOLOv7) have gained significant popularity due to their efficiency in identifying objects within images. However, these algorithms face limitations when applied to video feeds, as they treat each frame as an independent image, failing to track objects across consecutive frames. To address this issue, we propose a parametric Markov Chain Monte Carlo (MCMC) trend estimation algorithm that incorporates an Auto-Regressive ( A R ( p ) ) error assumption. We demonstrate that this MCMC algorithm achieves stationarity for the AR(p) model under specific constraints. Additionally, as a parametric method, the proposed algorithm can be applied to any time-related data, enabling the detection of underlying causes of trend changes for further analysis. Finally, we show that the proposed method can “stabilize” YOLOv7 detections, serving as an additional step to enhance the original algorithm’s performance.

Suggested Citation

  • Xiyuan Liu & Lingxiao Wang & Jiahao Li & Khan Raqib Mahmud & Shuo Pang, 2025. "Enhancing Wildfire Detection via Trend Estimation Under Auto-Regression Errors," Mathematics, MDPI, vol. 13(7), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1046-:d:1618791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
    2. P. M. Lerman, 1980. "Fitting Segmented Regression Models by Grid Search," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 77-84, March.
    3. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    4. Donald S. Poskitt, 2020. "On Singular Spectrum Analysis And Stepwise Time Series Reconstruction," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(1), pages 67-94, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Yajing Gao & Xiaojie Zhou & Jiafeng Ren & Zheng Zhao & Fushen Xue, 2018. "Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game," Energies, MDPI, vol. 11(5), pages 1-19, April.
    3. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    4. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    5. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    6. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    7. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    9. Wei Zhang, 2024. "Bayesian Dynamic Factor Models for High-dimensional Matrix-valued Time Series," Papers 2409.08354, arXiv.org, revised Nov 2024.
    10. Adham Alsharkawi & Mohammad Al-Fetyani & Maha Dawas & Heba Saadeh & Musa Alyaman, 2021. "Poverty Classification Using Machine Learning: The Case of Jordan," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    11. Ben Q. Liu & Dale L. Goodhue, 2012. "Two Worlds of Trust for Potential E-Commerce Users: Humans as Cognitive Misers," Information Systems Research, INFORMS, vol. 23(4), pages 1246-1262, December.
    12. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    13. Dinggao Liu & Zhenpeng Tang & Yi Cai, 2022. "A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    14. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    15. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    16. Chen Huann-Sheng & Zeichner Sarah & Anderson Robert N. & Espey David K. & Kim Hyune-Ju & Feuer Eric J., 2020. "The Joinpoint-Jump and Joinpoint-Comparability Ratio Model for Trend Analysis with Applications to Coding Changes in Health Statistics," Journal of Official Statistics, Sciendo, vol. 36(1), pages 49-62, March.
    17. Jing Bai & Jiahui Wang & Jin Ran & Xingyuan Li & Chuang Tu, 2024. "An Improved Neural Network Algorithm for Energy Consumption Forecasting," Sustainability, MDPI, vol. 16(21), pages 1-19, October.
    18. Wang, Deyun & Yue, Chenqiang & ElAmraoui, Adnen, 2021. "Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Tan, Xiujie & Xiao, Ziwei & Liu, Yishuang & Taghizadeh-Hesary, Farhad & Wang, Banban & Dong, Hanmin, 2022. "The effect of green credit policy on energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1046-:d:1618791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.