IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.14401.html
   My bibliography  Save this paper

Predictive Performance of LSTM Networks on Sectoral Stocks in an Emerging Market: A Case Study of the Pakistan Stock Exchange

Author

Listed:
  • Ahad Yaqoob
  • Syed M. Abdullah

Abstract

The application of deep learning models for stock price forecasting in emerging markets remains underexplored despite their potential to capture complex temporal dependencies. This study develops and evaluates a Long Short-Term Memory (LSTM) network model for predicting the closing prices of ten major stocks across diverse sectors of the Pakistan Stock Exchange (PSX). Utilizing historical OHLCV data and an extensive set of engineered technical indicators, we trained and validated the model on a multi-year dataset. Our results demonstrate strong predictive performance ($R^2 > 0.87$) for stocks in stable, high-liquidity sectors such as power generation, cement, and fertilizers. Conversely, stocks characterized by high volatility, low liquidity, or sensitivity to external shocks (e.g., global oil prices) presented significant forecasting challenges. The study provides a replicable framework for LSTM-based forecasting in data-scarce emerging markets and discusses implications for investors and future research.

Suggested Citation

  • Ahad Yaqoob & Syed M. Abdullah, 2025. "Predictive Performance of LSTM Networks on Sectoral Stocks in an Emerging Market: A Case Study of the Pakistan Stock Exchange," Papers 2509.14401, arXiv.org.
  • Handle: RePEc:arx:papers:2509.14401
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.14401
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.14401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.