IDEAS home Printed from https://ideas.repec.org/a/spr/futbus/v11y2025i1d10.1186_s43093-025-00646-z.html
   My bibliography  Save this article

Predictive modeling for the Moroccan financial market: a nonlinear time series and deep learning approach

Author

Listed:
  • Hassan Oukhouya

    (Mohamed I University
    University of Hassan II Casablanca)

  • Aziz Lmakri

    (University of Hassan II Casablanca)

  • Mohamed El Yahyaoui

    (University of Hassan II Casablanca)

  • Raby Guerbaz

    (University of Hassan II Casablanca)

  • Said El Melhaoui

    (Mohamed I University)

  • Moustapha Faizi

    (Mohamed I University)

  • Khalid El Himdi

    (Mohammed V University)

Abstract

This work presents a comparative study of predictive modeling methods in the context of financial markets, focusing on the Moroccan market. The objective of this study is to evaluate the performance of three different approaches: the autoregressive integrated moving average (ARIMA), bilinear models and long short-term memory (LSTM) networks. Predictive modeling is a vital skill for understanding and anticipating market behavior and facilitating informed decisions for investors, policymakers and financial institutions. This research uses historical financial data dating back to the post-COVID-19 pandemic period to train and evaluate these models. The bilinear model, a new relativistic approach to time series financial forecasting, is compared to the traditional linear ARIMA model and an advanced LSTM neural network. Our methodology includes data preprocessing, including normalization, to ensure compatibility with each important technique. Then, we train the models using residuals from historical market data and evaluate their performance using metrics such as mean absolute error, root-mean-square error and trend forecast accuracy. The results provide insights into the effectiveness of our recently developed hybrid models, which combine linear and nonlinear elements, in monitoring the dynamics of the Moroccan financial market. We thoroughly discuss the strengths and weaknesses of each model, focusing on areas where hybrid techniques outperform others. This research aims to delve deeper into and open up new avenues for understanding these models in financial markets and also to provide valuable insights for practitioners and researchers. The findings have implications for portfolio management, risk assessment and decision support systems within the Moroccan financial ecosystem.

Suggested Citation

  • Hassan Oukhouya & Aziz Lmakri & Mohamed El Yahyaoui & Raby Guerbaz & Said El Melhaoui & Moustapha Faizi & Khalid El Himdi, 2025. "Predictive modeling for the Moroccan financial market: a nonlinear time series and deep learning approach," Future Business Journal, Springer, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:spr:futbus:v:11:y:2025:i:1:d:10.1186_s43093-025-00646-z
    DOI: 10.1186/s43093-025-00646-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s43093-025-00646-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s43093-025-00646-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
    2. Cătălina-Lucia COCIANU & Hakob GRIGORYAN, 2016. "Machine Learning Techniques For Stock Market Prediction.Acase Study Of Omv Petrom," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 63-82.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Manish Kumar & M. Thenmozhi, 2014. "Forecasting stock index returns using ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid models," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 5(3), pages 284-308.
    5. Abhibasu Sen & Karabi Dutta Choudhury, 2024. "A case study of Gulf Securities Market in the last 20 years: A Long Short‐Term Memory approach," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 136-166, February.
    6. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    8. Altaf Hossain & Mohammed Nasser, 2011. "Comparison of the finite mixture of ARMA-GARCH, back propagation neural networks and support-vector machines in forecasting financial returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 533-551, November.
    9. Maravall, Agustin, 1983. "An Application of Nonlinear Time Series Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(1), pages 66-74, January.
    10. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    11. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    12. John W. Galbraith & Victoria Zinde-Walsh, 2001. "Autoregression-Based Estimators for ARFIMA Models," CIRANO Working Papers 2001s-11, CIRANO.
    13. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    14. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    15. Weiss, Andrew A, 1986. "ARCH and Bilinear Time Series Models: Comparison and Combination," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 59-70, January.
    16. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahad Yaqoob & Syed M. Abdullah, 2025. "Predictive Performance of LSTM Networks on Sectoral Stocks in an Emerging Market: A Case Study of the Pakistan Stock Exchange," Papers 2509.14401, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    2. Hiridik Rajendran & Parthajit Kayal & MOINAK Maiti, 2025. "A Multipurpose hybrid forecasting framework for economic stress scenarios: evidence from agriculture and energy sectors," Future Business Journal, Springer, vol. 11(1), pages 1-17, December.
    3. Wilfredo Palma & Mauricio Zevallos, 2004. "Analysis of the correlation structure of square time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 529-550, July.
    4. Zhu (Drew) Zhang & Jie Yuan & Amulya Gupta, 2024. "Let the Laser Beam Connect the Dots: Forecasting and Narrating Stock Market Volatility," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1400-1416, December.
    5. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    6. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    7. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    8. Yasemin Deniz Akarım, 2013. "A Comparison of Linear and Nonlinear Models in Forecasting Market Risk: The Evidence from Turkish Derivative Exchange," Journal of Economics and Behavioral Studies, AMH International, vol. 5(3), pages 164-172.
    9. David Peel & Alan Speight, 1994. "Testing for non-linear dependence in inter-war exchange rates," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 130(2), pages 391-417, June.
    10. Hu, Michael Y. & Tsoukalas, Christos, 1999. "Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 407-422, November.
    11. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Fernando Fernandez-Rodriguez & Simon Sosvilla-Rivero & Maria Dolores Garcia-Artiles, 1997. "Using nearest neighbour predictors to forecast the Spanish stock market," Investigaciones Economicas, Fundación SEPI, vol. 21(1), pages 75-91, January.
    13. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
    14. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    15. Fathi Abid & Bilel Kaffel, 2018. "The extent of virgin olive-oil prices’ distribution revealing the behavior of market speculators," Review of Quantitative Finance and Accounting, Springer, vol. 50(2), pages 561-590, February.
    16. Gupta, Abhijit, 2025. "Decoding Futures Price Dynamics: A Regularized Sparse Autoencoder for Interpretable Multi-Horizon Forecasting and Factor Discovery," OSF Preprints 4rzky_v1, Center for Open Science.
    17. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    18. Chuxuan Xiao & Winifred Huang & David P. Newton, 2024. "Predicting expected idiosyncratic volatility: Empirical evidence from ARFIMA, HAR, and EGARCH models," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 979-1006, October.
    19. Nijman, T.E. & Palm, F.C., 1991. "Recent developments in modeling volatility in financial data," Discussion Paper 1991-68, Tilburg University, Center for Economic Research.
    20. Nagaraj Naik & Biju R. Mohan, 2021. "Stock Price Volatility Estimation Using Regime Switching Technique-Empirical Study on the Indian Stock Market," Mathematics, MDPI, vol. 9(14), pages 1-18, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:futbus:v:11:y:2025:i:1:d:10.1186_s43093-025-00646-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.