IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.12195.html
   My bibliography  Save this paper

Optimal Savings with Preference for Wealth

Author

Listed:
  • Qingyin Ma
  • Alexis Akira Toda

Abstract

The consumption function maps current wealth and the exogenous state to current consumption. We prove the existence and uniqueness of a consumption function when the agent has a preference for wealth. When the period utility functions are restricted to power functions, we prove that the consumption function is asymptotically linear as wealth tends to infinity and provide a complete characterization of the asymptotic slopes. When the risk aversion with respect to wealth is less than that for consumption, the asymptotic slope is zero regardless of other model parameters, implying wealthy households save a large fraction of their income, consistent with empirical evidence.

Suggested Citation

  • Qingyin Ma & Alexis Akira Toda, 2025. "Optimal Savings with Preference for Wealth," Papers 2509.12195, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2509.12195
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.12195
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    2. Janusz Matkowski & Andrzej Nowak, 2011. "On discounted dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 455-474, April.
    3. Brock, William A, 1970. "An Axiomatic Basis for the Ramsey- Weizsacker Overtaking Criterion," Econometrica, Econometric Society, vol. 38(6), pages 927-929, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaetano Bloise & Cuong Le Van & Yiannis Vailakis, 2024. "Do not Blame Bellman: It Is Koopmans' Fault," Econometrica, Econometric Society, vol. 92(1), pages 111-140, January.
    2. João Brogueira & Fabian Schütze, 2017. "Existence and uniqueness of equilibrium in Lucas’ asset pricing model when utility is unbounded," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(2), pages 179-190, October.
    3. Nicole Bauerle & Anna Ja'skiewicz, 2015. "Stochastic Optimal Growth Model with Risk Sensitive Preferences," Papers 1509.05638, arXiv.org.
    4. Bäuerle, Nicole & Jaśkiewicz, Anna, 2018. "Stochastic optimal growth model with risk sensitive preferences," Journal of Economic Theory, Elsevier, vol. 173(C), pages 181-200.
    5. Agnieszka Wiszniewska-Matyszkiel & Rajani Singh, 2020. "When Inaccuracies in Value Functions Do Not Propagate on Optima and Equilibria," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    6. Matthias Messner & Nicola Pavoni & Christopher Sleet, "undated". "Contractive Dual Methods for Incentive Problems," GSIA Working Papers 2012-E26, Carnegie Mellon University, Tepper School of Business.
    7. Dubois, Pierre & Magnac, Thierry, 2024. "Optimal intertemporal curative drug expenses: The case of hepatitis C in France," Journal of Health Economics, Elsevier, vol. 94(C).
    8. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    9. V. Filipe Martins-da-Rocha & Yiannis Vailakis, 2013. "Fixed point for local contractions: Applications to recursive utility," International Journal of Economic Theory, The International Society for Economic Theory, vol. 9(1), pages 23-33, March.
    10. Bloise, Gaetano & Vailakis, Yiannis, 2018. "Convex dynamic programming with (bounded) recursive utility," Journal of Economic Theory, Elsevier, vol. 173(C), pages 118-141.
    11. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    12. Xavier Boutin, 2015. "Mergers and the Dynamics of Innovation," Working Papers ECARES ECARES 2015-15, ULB -- Universite Libre de Bruxelles.
    13. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
    14. Fan, Ye & Lin, Nan, 2025. "Sequential quantile regression for stream data by least squares," Journal of Econometrics, Elsevier, vol. 249(PA).
    15. Kamihigashi, Takashi & Stachurski, John, 2012. "An order-theoretic mixing condition for monotone Markov chains," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 262-267.
    16. Juan Pablo Rinc'on-Zapatero, 2019. "Existence and Uniqueness of Solutions to the Stochastic Bellman Equation with Unbounded Shock," Papers 1907.07343, arXiv.org.
    17. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169552, HAL.
    18. Mitra, Tapan & Roy, Santanu, 2017. "Optimality of Ramsey–Euler policy in the stochastic growth model," Journal of Economic Theory, Elsevier, vol. 172(C), pages 1-25.
    19. Kohei Kamaga & Takashi Kojima, 2010. "On the leximin and utilitarian overtaking criteria with extended anonymity," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(3), pages 377-392, September.
    20. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.12195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.