IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.05638.html
   My bibliography  Save this paper

Stochastic Optimal Growth Model with Risk Sensitive Preferences

Author

Listed:
  • Nicole Bauerle
  • Anna Ja'skiewicz

Abstract

This paper studies a one-sector optimal growth model with i.i.d. productivity shocks that are allowed to be unbounded. The utility function is assumed to be non-negative and unbounded from above. The novel feature in our framework is that the agent has risk sensitive preferences in the sense of Hansen and Sargent (1995). Under mild assumptions imposed on the productivity and utility functions we prove that the maximal discounted non-expected utility in the infinite time horizon satisfies the optimality equation and the agent possesses a stationary optimal policy. A new point used in our analysis is an inequality for the so-called associated random variables. We also establish the Euler equation that incorporates the solution to the optimality equation.

Suggested Citation

  • Nicole Bauerle & Anna Ja'skiewicz, 2015. "Stochastic Optimal Growth Model with Risk Sensitive Preferences," Papers 1509.05638, arXiv.org.
  • Handle: RePEc:arx:papers:1509.05638
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.05638
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kamihigashi, Takashi, 2007. "Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 477-500, April.
    2. Stachurski, John & Kamihigashi, Takashi, 2014. "Stochastic stability in monotone economies," Theoretical Economics, Econometric Society, vol. 9(2), May.
    3. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, January.
    4. TallariniJr., Thomas D., 2000. "Risk-sensitive real business cycles," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 507-532, June.
    5. Le Van, Cuong & Vailakis, Yiannis, 2005. "Recursive utility and optimal growth with bounded or unbounded returns," Journal of Economic Theory, Elsevier, vol. 123(2), pages 187-209, August.
    6. V. Filipe Martins-da-Rocha & Yiannis Vailakis, 2010. "Existence and Uniqueness of a Fixed Point for Local Contractions," Econometrica, Econometric Society, vol. 78(3), pages 1127-1141, May.
    7. repec:spr:dymeef:978-3-642-54248-0 is not listed on IDEAS
    8. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    9. Janusz Matkowski & Andrzej Nowak, 2011. "On discounted dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 455-474, April.
    10. Le Van, Cuong & Morhaim, Lisa, 2002. "Optimal Growth Models with Bounded or Unbounded Returns: A Unifying Approach," Journal of Economic Theory, Elsevier, vol. 105(1), pages 158-187, July.
    11. Epstein, Larry G & Zin, Stanley E, 1989. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica, Econometric Society, vol. 57(4), pages 937-969, July.
    12. Zhang, Yuzhe, 2007. "Stochastic optimal growth with a non-compact state space," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 115-129, February.
    13. Anderson, Evan W. & Hansen, Lars Peter & Sargent, Thomas J., 2012. "Small noise methods for risk-sensitive/robust economies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 468-500.
    14. Alvarez, Fernando & Stokey, Nancy L., 1998. "Dynamic Programming with Homogeneous Functions," Journal of Economic Theory, Elsevier, vol. 82(1), pages 167-189, September.
    15. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
    16. Nishimura, Kazuo & Stachurski, John, 2005. "Stability of stochastic optimal growth models: a new approach," Journal of Economic Theory, Elsevier, vol. 122(1), pages 100-118, May.
    17. Boud, John III, 1990. "Recursive utility and the Ramsey problem," Journal of Economic Theory, Elsevier, vol. 50(2), pages 326-345, April.
    18. Anderson, Evan W., 2005. "The dynamics of risk-sensitive allocations," Journal of Economic Theory, Elsevier, vol. 125(2), pages 93-150, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.05638. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.