IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Recursive utility and optimal growth with bounded or unbounded returns

  • LE VAN, Cuong
  • VAILAKIS, Yiannis

In this paper we propose a unifying approach to the study of recursive economic problems. Postulating an aggregator function as the fundamental expression of tastes, we explore conditions under which a utility function can be constructed. We also modify the usual dynamic programming arguments to include this class of models. We show that Bellman's equation still holds, so many results known for the additively separable case can be generalized for this general description of preferences. Our approach is general, allowing for both bounded and unbounded (above/below) returns. Many recursive economic models, including the standard examples studied in the literature, are particular cases of our setting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://alfresco.uclouvain.be/alfresco/download/attach/workspace/SpacesStore/8c3c3ac4-25ad-44ec-8f8a-d2b20c6e0258/coredp_2002_55.pdf
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2002055.

as
in new window

Length:
Date of creation: 00 Oct 2002
Date of revision:
Handle: RePEc:cor:louvco:2002055
Contact details of provider: Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Web page: http://www.uclouvain.be/core
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jorge Durán, 2002. "Discounting Long Run Average Growth In Stochastic Dynamic Programs," Working Papers. Serie AD 2002-08, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  2. Le Van, Cuong & Morhaim, Lisa, 2002. "Optimal Growth Models with Bounded or Unbounded Returns: A Unifying Approach," Journal of Economic Theory, Elsevier, vol. 105(1), pages 158-187, July.
  3. Alvarez, Fernando & Stokey, Nancy L., 1998. "Dynamic Programming with Homogeneous Functions," Journal of Economic Theory, Elsevier, vol. 82(1), pages 167-189, September.
  4. Streufert, Peter A, 1990. "Stationary Recursive Utility and Dynamic Programming under the Assumption of Biconvergence," Review of Economic Studies, Wiley Blackwell, vol. 57(1), pages 79-97, January.
  5. Epstein, Larry G., 1983. "Stationary cardinal utility and optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 31(1), pages 133-152, October.
  6. Robert E. Lucas Jr. & Nancy L. Stokey, 1982. "Optimal Growth with Many Consumers," Discussion Papers 518, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  7. Dana, Rose-Anne & Van, Cuong Le, 1991. "Optimal growth and Pareto optimality," Journal of Mathematical Economics, Elsevier, vol. 20(2), pages 155-180.
  8. Boud, John III, 1990. "Recursive utility and the Ramsey problem," Journal of Economic Theory, Elsevier, vol. 50(2), pages 326-345, April.
  9. Juan Pablo RincÛn-Zapatero & Carlos RodrÌguez-Palmero, 2003. "Existence and Uniqueness of Solutions to the Bellman Equation in the Unbounded Case," Econometrica, Econometric Society, vol. 71(5), pages 1519-1555, 09.
  10. Epstein, Larry G & Zin, Stanley E, 1989. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica, Econometric Society, vol. 57(4), pages 937-69, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2002055. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.