IDEAS home Printed from
   My bibliography  Save this paper

Optimal Growth Models with Bounded or Unbounded Returns : a Unifying Approach


  • Le Van, C.
  • Morhaim, L.


In this paper we propose a unifying approach to study optimal growth models with bounded or unbounded returns. We prove existence of optimal solutions. We prove also, without using contraction method, that the value function is the unique solution to the Bellman equation in some classes of functions.

Suggested Citation

  • Le Van, C. & Morhaim, L., 2000. "Optimal Growth Models with Bounded or Unbounded Returns : a Unifying Approach," Papiers d'Economie Mathématique et Applications 2000.64, Université Panthéon-Sorbonne (Paris 1).
  • Handle: RePEc:fth:pariem:2000.64

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Dana, Rose-Anne & Van, Cuong Le, 1991. "Optimal growth and Pareto optimality," Journal of Mathematical Economics, Elsevier, vol. 20(2), pages 155-180.
    2. Becker, Robert A & Boyd, John H, III & Foias, Ciprian, 1991. "The Existence of Ramsey Equilibrium," Econometrica, Econometric Society, vol. 59(2), pages 441-460, March.
    3. Peter A. Streufert, 1990. "Stationary Recursive Utility and Dynamic Programming under the Assumption of Biconvergence," Review of Economic Studies, Oxford University Press, vol. 57(1), pages 79-97.
    4. Alvarez, Fernando & Stokey, Nancy L., 1998. "Dynamic Programming with Homogeneous Functions," Journal of Economic Theory, Elsevier, vol. 82(1), pages 167-189, September.
    5. Boud, John III, 1990. "Recursive utility and the Ramsey problem," Journal of Economic Theory, Elsevier, vol. 50(2), pages 326-345, April.
    6. Jorge DurÂn, 2000. "On dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(2), pages 339-352.
    7. Streufert, Peter A., 1992. "An abstract topological approach to dynamic programming," Journal of Mathematical Economics, Elsevier, vol. 21(1), pages 59-88.
    Full references (including those not matched with items on IDEAS)

    More about this item



    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:pariem:2000.64. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.