IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.01683.html

The Impact of Sequential versus Parallel Clearing Mechanisms in Agent-Based Simulations of Artificial Limit Order Book Exchanges

Author

Listed:
  • Matej Steinbacher
  • Mitja Steinbacher
  • Matjaz Steinbacher

Abstract

This study examines the impact of different computing implementations of clearing mechanisms on multi-asset price dynamics within an artificial stock market framework. We show that sequential processing of order books introduces a systematic and significant bias by affecting the allocation of traders' capital within a single time step. This occurs because applying budget constraints sequentially grants assets processed earlier preferential access to funds, distorting individual asset demand and consequently their price trajectories. The findings highlight that while the overall price level is primarily driven by macro factors like the money-to-stock ratio, the market's microstructural clearing mechanism plays a critical role in the allocation of value among individual assets. This underscores the necessity for careful consideration and validation of clearing mechanisms in artificial markets to accurately model complex financial behaviors.

Suggested Citation

  • Matej Steinbacher & Mitja Steinbacher & Matjaz Steinbacher, 2025. "The Impact of Sequential versus Parallel Clearing Mechanisms in Agent-Based Simulations of Artificial Limit Order Book Exchanges," Papers 2509.01683, arXiv.org.
  • Handle: RePEc:arx:papers:2509.01683
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.01683
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    2. J. Silvestre, & T. Araújo & M. St. Aubyn, 2016. "Economic growth and individual satisfaction in an agent-based economy," Working Papers Department of Economics 2016/19, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    3. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    4. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    5. Eugenio Caverzasi & Antoine Godin, 2013. "Stock-flow Consistent Modeling through the Ages," Economics Working Paper Archive wp_745, Levy Economics Institute.
    6. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    7. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    8. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Dirk Helbing & Thomas U. Grund, 2013. "Editorial: Agent-Based Modeling And Techno-Social Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-3.
    10. Frank Westerhoff & Martin Hohnisch, 2010. "Consumer sentiment and countercyclical fiscal policies," International Review of Applied Economics, Taylor & Francis Journals, vol. 24(5), pages 609-618.
    11. Roberto Veneziani & Luca Zamparelli & Michalis Nikiforos & Gennaro Zezza, 2017. "Stock-Flow Consistent Macroeconomic Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1204-1239, December.
    12. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    13. Waters, George A., 2009. "Chaos in the cobweb model with a new learning dynamic," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1201-1216, June.
    14. Frank H. Westerhoff, 2006. "Business Cycles, Heuristic Expectation Formation, and Contracyclical Policies," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 8(5), pages 821-838, December.
    15. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2016. "How Inflation Affects Macroeconomic Performance: An Agent-Based Computational Investigation," Macroeconomic Dynamics, Cambridge University Press, vol. 20(2), pages 558-581, March.
    16. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    17. Karlis, Alexandros & Galanis, Girogos & Terovitis, Spyridon & Turner, Matthew, "undated". "Heterogeneity and Clustering of Defaults," Economic Research Papers 270011, University of Warwick - Department of Economics.
    18. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    19. Cristiano CODAGNONE & Giovanni LIVA & Egidijus BARCEVICIUS & Gianluca MISURACA & Luka KLIMAVICIUTE & Michele BENEDETTI & Irene VANINI & Giancarlo VECCHI & Emily RYEN GLOINSON & Katherine STEWART & Sti, 2020. "Assessing the impacts of digital government transformation in the EU: Conceptual framework and empirical case studies," JRC Research Reports JRC120865, Joint Research Centre.
    20. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.01683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.