IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.18868.html
   My bibliography  Save this paper

Tackling estimation risk in Kelly investing using options

Author

Listed:
  • Fabrizio Lillo
  • Piero Mazzarisi
  • Ioanna-Yvonni Tsaknaki

Abstract

The Kelly criterion provides a general framework for optimizing the growth rate of an investment portfolio over time by maximizing the expected logarithmic utility of wealth. However, the optimality condition of the Kelly criterion is highly sensitive to accurate estimates of the probabilities and investment payoffs. Estimation risk can lead to greatly suboptimal portfolios. In a simple binomial model, we show that the introduction of a European option in the Kelly framework can be used to construct a class of growth optimal portfolios that are robust to estimation risk.

Suggested Citation

  • Fabrizio Lillo & Piero Mazzarisi & Ioanna-Yvonni Tsaknaki, 2025. "Tackling estimation risk in Kelly investing using options," Papers 2508.18868, arXiv.org, revised Nov 2025.
  • Handle: RePEc:arx:papers:2508.18868
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.18868
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    2. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    3. Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
    4. Thomas J. Brennan & Andrew W. Lo, 2011. "The Origin of Behavior," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 55-108.
    5. MacLean, Leonard C. & Sanegre, Rafael & Zhao, Yonggan & Ziemba, William T., 2004. "Capital growth with security," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 937-954, February.
    6. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    7. Thomas Breuer & Imre Csiszár, 2016. "Measuring Distribution Model Risk," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 395-411, April.
    8. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bonaccolto & Sandra Paterlini, 2020. "Developing new portfolio strategies by aggregation," Annals of Operations Research, Springer, vol. 292(2), pages 933-971, September.
    2. Sass, Jörn & Thös, Anna-Katharina, 2024. "Risk reduction and portfolio optimization using clustering methods," Econometrics and Statistics, Elsevier, vol. 32(C), pages 1-16.
    3. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    4. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    5. Ledoit, Olivier & Wolf, Michael, 2025. "Markowitz portfolios under transaction costs," The Quarterly Review of Economics and Finance, Elsevier, vol. 100(C).
    6. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    7. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    8. Andrew Paskaramoorthy & Tim Gebbie & Terence van Zyl, 2021. "The efficient frontiers of mean-variance portfolio rules under distribution misspecification," Papers 2106.10491, arXiv.org, revised Jul 2021.
    9. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    10. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    11. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    12. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    13. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    14. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    15. Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
    16. Kourtis, Apostolos, 2014. "On the distribution and estimation of trading costs," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 104-117.
    17. Moorman, Theodore, 2014. "An empirical investigation of methods to reduce transaction costs," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 230-246.
    18. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    19. Hongseon Kim & Soonbong Lee & Seung Bum Soh & Seongmoon Kim, 2022. "Improving portfolio investment performance with distance‐based portfolio‐combining algorithms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(4), pages 941-959, December.
    20. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.18868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.