IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.13972.html
   My bibliography  Save this paper

A Nonparametric Approach to Augmenting a Bayesian VAR with Nonlinear Factors

Author

Listed:
  • Todd Clark
  • Florian Huber
  • Gary Koop

Abstract

This paper proposes a Vector Autoregression augmented with nonlinear factors that are modeled nonparametrically using regression trees. There are four main advantages of our model. First, modeling potential nonlinearities nonparametrically lessens the risk of mis-specification. Second, the use of factor methods ensures that departures from linearity are modeled parsimoniously. In particular, they exhibit functional pooling where a small number of nonlinear factors are used to model common nonlinearities across variables. Third, Bayesian computation using MCMC is straightforward even in very high dimensional models, allowing for efficient, equation by equation estimation, thus avoiding computational bottlenecks that arise in popular alternatives such as the time varying parameter VAR. Fourth, existing methods for identifying structural economic shocks in linear factor models can be adapted for the nonlinear case in a straightforward fashion using our model. Exercises involving artificial and macroeconomic data illustrate the properties of our model and its usefulness for forecasting and structural economic analysis.

Suggested Citation

  • Todd Clark & Florian Huber & Gary Koop, 2025. "A Nonparametric Approach to Augmenting a Bayesian VAR with Nonlinear Factors," Papers 2508.13972, arXiv.org.
  • Handle: RePEc:arx:papers:2508.13972
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.13972
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tony Chernis & Niko Hauzenberger & Haroon Mumtaz & Michael Pfarrhofer, 2025. "A Bayesian Gaussian Process Dynamic Factor Model," Papers 2509.04928, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keijsers, Bart & van Dijk, Dick, 2025. "Does economic uncertainty predict real activity in real time?," International Journal of Forecasting, Elsevier, vol. 41(2), pages 748-762.
    2. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    3. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    4. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    5. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    6. Yongsung Chang & Sunoong Hwang, 2015. "Asymmetric Phase Shifts in U.S. Industrial Production Cycles," The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 116-133, March.
    7. Calderón, César & Fuentes, J. Rodrigo, 2014. "Have business cycles changed over the last two decades? An empirical investigation," Journal of Development Economics, Elsevier, vol. 109(C), pages 98-123.
    8. Daniel de Almeida & Ana-Maria Fuertes & Luiz Koodi Hotta, 2025. "Out-of-Sample Predictability of the Equity Risk Premium," Mathematics, MDPI, vol. 13(2), pages 1-23, January.
    9. Yunhao Chen & Xiaoquan Jiang & Bong-Soo Lee, 2015. "Long-Term Evidence on the Effect of Aggregate Earnings on Prices," Financial Management, Financial Management Association International, vol. 44(2), pages 323-351, June.
    10. Cantú, Carlos & Gondo, Rocio & Martínez, Berenice, 2019. "Reserve requirements as a financial stability instrument," Working Papers 2019-014, Banco Central de Reserva del Perú.
    11. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    12. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    13. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    14. Michael T. Owyang & Jeremy M. Piger & Howard J. Wall, 2005. "The 2001 recession and the states of the Eighth Federal Reserve District," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 3-16.
    15. Marcelle Chauvet & Jeremy Piger, 2013. "Employment And The Business Cycle," Manchester School, University of Manchester, vol. 81, pages 16-42, October.
    16. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    17. Alexander Kurov, 2012. "What determines the stock market's reaction to monetary policy statements?," Review of Financial Economics, John Wiley & Sons, vol. 21(4), pages 175-187, November.
    18. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    19. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
    20. Dalibor Stevanovic, 2013. "Probability and Severity of Recessions," CIRANO Working Papers 2013s-43, CIRANO.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.13972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.