IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.18560.html
   My bibliography  Save this paper

HARLF: Hierarchical Reinforcement Learning and Lightweight LLM-Driven Sentiment Integration for Financial Portfolio Optimization

Author

Listed:
  • Benjamin Coriat
  • Eric Benhamou

Abstract

This paper presents a novel hierarchical framework for portfolio optimization, integrating lightweight Large Language Models (LLMs) with Deep Reinforcement Learning (DRL) to combine sentiment signals from financial news with traditional market indicators. Our three-tier architecture employs base RL agents to process hybrid data, meta-agents to aggregate their decisions, and a super-agent to merge decisions based on market data and sentiment analysis. Evaluated on data from 2018 to 2024, after training on 2000-2017, the framework achieves a 26% annualized return and a Sharpe ratio of 1.2, outperforming equal-weighted and S&P 500 benchmarks. Key contributions include scalable cross-modal integration, a hierarchical RL structure for enhanced stability, and open-source reproducibility.

Suggested Citation

  • Benjamin Coriat & Eric Benhamou, 2025. "HARLF: Hierarchical Reinforcement Learning and Lightweight LLM-Driven Sentiment Integration for Financial Portfolio Optimization," Papers 2507.18560, arXiv.org.
  • Handle: RePEc:arx:papers:2507.18560
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.18560
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    2. Markus K. Brunnermeier, 2009. "Deciphering the Liquidity and Credit Crunch 2007-2008," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 77-100, Winter.
    3. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    4. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    5. Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
    6. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    7. Yupeng Cao & Zhiyuan Yao & Zhi Chen & Zhiyang Deng, 2024. "CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications," Papers 2407.01953, arXiv.org.
    8. Jean Lee & Nicholas Stevens & Soyeon Caren Han & Minseok Song, 2024. "A Survey of Large Language Models in Finance (FinLLMs)," Papers 2402.02315, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    2. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    3. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    4. Yinheng Li & Junhao Wang & Yijie Cao, 2019. "A General Framework on Enhancing Portfolio Management with Reinforcement Learning," Papers 1911.11880, arXiv.org, revised Oct 2023.
    5. Yu, Pengrui & Liu, Siya & Jin, Chengneng & Gu, Runsheng & Gong, Xiaomin, 2025. "Optimization-based spectral end-to-end deep reinforcement learning for equity portfolio management," Pacific-Basin Finance Journal, Elsevier, vol. 91(C).
    6. Han Ding & Yinheng Li & Junhao Wang & Hang Chen, 2024. "Large Language Model Agent in Financial Trading: A Survey," Papers 2408.06361, arXiv.org.
    7. Gang Huang & Xiaohua Zhou & Qingyang Song, 2020. "Deep Reinforcement Learning for Long-Short Portfolio Optimization," Papers 2012.13773, arXiv.org, revised Mar 2025.
    8. Goedde-Menke, Michael & Langer, Thomas & Pfingsten, Andreas, 2014. "Impact of the financial crisis on bank run risk – Danger of the days after," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 522-533.
    9. Caio de Souza Barbosa Costa & Anna Helena Reali Costa, 2025. "Comparing Normalization Methods for Portfolio Optimization with Reinforcement Learning," Papers 2508.03910, arXiv.org.
    10. King, Timothy & Srivastav, Abhishek & Williams, Jonathan, 2016. "What's in an education? Implications of CEO education for bank performance," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 287-308.
    11. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    12. Lutz, Chandler, 2015. "The impact of conventional and unconventional monetary policy on investor sentiment," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 89-105.
    13. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
    14. Stella C. Dong & James R. Finlay, 2025. "Dynamic Reinsurance Treaty Bidding via Multi-Agent Reinforcement Learning," Papers 2506.13113, arXiv.org.
    15. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    16. Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
    17. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    18. Tian, Yuan & Han, Minghao & Kulkarni, Chetan & Fink, Olga, 2022. "A prescriptive Dirichlet power allocation policy with deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    19. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    20. Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023. "Reinforcement learning policy recommendation for interbank network stability," Journal of Financial Stability, Elsevier, vol. 67(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.18560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.