HARLF: Hierarchical Reinforcement Learning and Lightweight LLM-Driven Sentiment Integration for Financial Portfolio Optimization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
- Markus K. Brunnermeier, 2009. "Deciphering the Liquidity and Credit Crunch 2007-2008," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 77-100, Winter.
- Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- Yupeng Cao & Zhiyuan Yao & Zhi Chen & Zhiyang Deng, 2024. "CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications," Papers 2407.01953, arXiv.org.
- Jean Lee & Nicholas Stevens & Soyeon Caren Han & Minseok Song, 2024. "A Survey of Large Language Models in Finance (FinLLMs)," Papers 2402.02315, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Yinheng Li & Junhao Wang & Yijie Cao, 2019. "A General Framework on Enhancing Portfolio Management with Reinforcement Learning," Papers 1911.11880, arXiv.org, revised Oct 2023.
- Yu, Pengrui & Liu, Siya & Jin, Chengneng & Gu, Runsheng & Gong, Xiaomin, 2025. "Optimization-based spectral end-to-end deep reinforcement learning for equity portfolio management," Pacific-Basin Finance Journal, Elsevier, vol. 91(C).
- Han Ding & Yinheng Li & Junhao Wang & Hang Chen, 2024. "Large Language Model Agent in Financial Trading: A Survey," Papers 2408.06361, arXiv.org.
- Gang Huang & Xiaohua Zhou & Qingyang Song, 2020. "Deep Reinforcement Learning for Long-Short Portfolio Optimization," Papers 2012.13773, arXiv.org, revised Mar 2025.
- Goedde-Menke, Michael & Langer, Thomas & Pfingsten, Andreas, 2014. "Impact of the financial crisis on bank run risk – Danger of the days after," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 522-533.
- Caio de Souza Barbosa Costa & Anna Helena Reali Costa, 2025. "Comparing Normalization Methods for Portfolio Optimization with Reinforcement Learning," Papers 2508.03910, arXiv.org.
- King, Timothy & Srivastav, Abhishek & Williams, Jonathan, 2016. "What's in an education? Implications of CEO education for bank performance," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 287-308.
- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Lutz, Chandler, 2015. "The impact of conventional and unconventional monetary policy on investor sentiment," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 89-105.
- Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015.
"Determinants of systemic risk and information dissemination,"
International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
- Marcelo Bianconi & Xiaxin Hua & Chih Ming Tan, 2013. "Determinants of Systemic Risk and Information Dissemination," Working Paper series 67_13, Rimini Centre for Economic Analysis.
- Marcelo Bianconi & Xiaxin Hua & Chih Ming Tan, 2013. "Determinants of Systemic Risk and Information Dissemination," Discussion Papers Series, Department of Economics, Tufts University 0776, Department of Economics, Tufts University.
- Stella C. Dong & James R. Finlay, 2025. "Dynamic Reinsurance Treaty Bidding via Multi-Agent Reinforcement Learning," Papers 2506.13113, arXiv.org.
- Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
- Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
- Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
- Tian, Yuan & Han, Minghao & Kulkarni, Chetan & Fink, Olga, 2022. "A prescriptive Dirichlet power allocation policy with deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
- Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023.
"Reinforcement learning policy recommendation for interbank network stability,"
Journal of Financial Stability, Elsevier, vol. 67(C).
- Alessio Brini & Gabriele Tedeschi & Daniele Tantari, 2022. "Reinforcement Learning Policy Recommendation for Interbank Network Stability," Papers 2204.07134, arXiv.org, revised May 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AIN-2025-08-11 (Artificial Intelligence)
- NEP-BIG-2025-08-11 (Big Data)
- NEP-CMP-2025-08-11 (Computational Economics)
- NEP-INV-2025-08-11 (Investment)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.18560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2507.18560.html