IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.00913.html
   My bibliography  Save this paper

Local Strategy-Proofness and Dictatorship

Author

Listed:
  • Abinash Panda
  • Anup Pramanik
  • Ragini Saxena

Abstract

We investigate preference domains where every unanimous and locally strategy-proof social choice function (scf) satisfies dictatorship. We identify a condition on domains called connected with two distinct neighbours which is necessary for unanimous and locally strategy-proof scfs to satisfy dictatorship. Further, we show that this condition is sufficient within the class of domains where every unanimous and locally strategy-proof scf satisfies tops-onlyness. While a complete characterization remains open, we make significant progress by showing that on connected with two distinct neighbours domains, unanimity and strategy-proofness (a stronger requirement) guarantee dictatorship.

Suggested Citation

  • Abinash Panda & Anup Pramanik & Ragini Saxena, 2025. "Local Strategy-Proofness and Dictatorship," Papers 2507.00913, arXiv.org.
  • Handle: RePEc:arx:papers:2507.00913
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.00913
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2009. "Strategy-proofness and single-crossing," Theoretical Economics, Econometric Society, vol. 4(2), June.
    2. Chatterji, Shurojit & Zeng, Huaxia, 2023. "A taxonomy of non-dictatorial unidimensional domains," Games and Economic Behavior, Elsevier, vol. 137(C), pages 228-269.
    3. Kumar, Ujjwal & Roy, Souvik, 2024. "Local incentive compatibility on gross substitutes and other non-convex type-spaces," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    4. Anup Pramanik, 2015. "Further results on dictatorial domains," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 379-398, September.
    5. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    6. Mishra, Debasis & Pramanik, Anup & Roy, Souvik, 2016. "Local incentive compatibility with transfers," Games and Economic Behavior, Elsevier, vol. 100(C), pages 149-165.
    7. Gabriel Carroll, 2012. "When Are Local Incentive Constraints Sufficient?," Econometrica, Econometric Society, vol. 80(2), pages 661-686, March.
    8. H. Moulin, 1980. "On strategy-proofness and single peakedness," Public Choice, Springer, vol. 35(4), pages 437-455, January.
    9. Miho Hong & Semin Kim, 2023. "Unanimity and local incentive compatibility in sparsely connected domains," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(2), pages 385-411, August.
    10. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mishra, Debasis, 2016. "Ordinal Bayesian incentive compatibility in restricted domains," Journal of Economic Theory, Elsevier, vol. 163(C), pages 925-954.
    2. Chatterji, Shurojit & Zeng, Huaxia, 2018. "On random social choice functions with the tops-only property," Games and Economic Behavior, Elsevier, vol. 109(C), pages 413-435.
    3. Chatterji, Shurojit & Zeng, Huaxia, 2023. "A taxonomy of non-dictatorial unidimensional domains," Games and Economic Behavior, Elsevier, vol. 137(C), pages 228-269.
    4. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    5. Roy, Souvik & Sadhukhan, Soumyarup, 2021. "A unified characterization of the randomized strategy-proof rules," Journal of Economic Theory, Elsevier, vol. 197(C).
    6. Bandhu, Sarvesh & Mondal, Bishwajyoti & Pramanik, Anup, 2022. "Strategy-proofness of the unanimity with status-quo rule over restricted domains," Economics Letters, Elsevier, vol. 210(C).
    7. Achuthankutty, Gopakumar & Roy, Souvik, 2017. "On Top-connected Single-peaked and Partially Single-peaked Domains," MPRA Paper 78102, University Library of Munich, Germany.
    8. Shurojit Chatterji & Huaxia Zeng, 2022. "A Taxonomy of Non-dictatorial Unidimensional Domains," Papers 2201.00496, arXiv.org, revised Oct 2022.
    9. Souvik Roy & Soumyarup Sadhukhan, 2019. "A characterization of random min–max domains and its applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 887-906, November.
    10. Roy, Souvik & Storcken, Ton, 2019. "A characterization of possibility domains in strategic voting," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 46-55.
    11. Barberà, Salvador & Berga, Dolors & Moreno, Bernardo, 2010. "Individual versus group strategy-proofness: When do they coincide?," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1648-1674, September.
    12. X. Ruiz del Portal, 2012. "Conditions for incentive compatibility in models with multidimensional allocation functions and one-dimensional types," Review of Economic Design, Springer;Society for Economic Design, vol. 16(4), pages 311-321, December.
    13. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.
    14. Haeringer, Guillaume & Hałaburda, Hanna, 2016. "Monotone strategyproofness," Games and Economic Behavior, Elsevier, vol. 98(C), pages 68-77.
    15. Shurojit Chatterji & Huaxia Zeng, 2023. "Decomposability and Strategy-proofness in Multidimensional Models," Papers 2303.10889, arXiv.org, revised Nov 2023.
    16. Chatterji, Shurojit & Sanver, Remzi & Sen, Arunava, 2013. "On domains that admit well-behaved strategy-proof social choice functions," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1050-1073.
    17. Debasis Mishra, 2014. "A Foundation for dominant strategy voting mechanisms," Discussion Papers 14-09, Indian Statistical Institute, Delhi.
    18. Barberà, Salvador & Berga, Dolors & Moreno, Bernardo, 2022. "Restricted environments and incentive compatibility in interdependent values models," Games and Economic Behavior, Elsevier, vol. 131(C), pages 1-28.
    19. Tobias Rachidi, 2020. "Optimal Voting Mechanisms on Generalized Single-Peaked Domains," CRC TR 224 Discussion Paper Series crctr224_2020_214, University of Bonn and University of Mannheim, Germany.
    20. Miho Hong & Semin Kim, 2023. "Unanimity and local incentive compatibility in sparsely connected domains," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(2), pages 385-411, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.00913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.