IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.22763.html
   My bibliography  Save this paper

Can We Reliably Predict the Fed's Next Move? A Multi-Modal Approach to U.S. Monetary Policy Forecasting

Author

Listed:
  • Fiona Xiao Jingyi
  • Lili Liu

Abstract

Forecasting central bank policy decisions remains a persistent challenge for investors, financial institutions, and policymakers due to the wide-reaching impact of monetary actions. In particular, anticipating shifts in the U.S. federal funds rate is vital for risk management and trading strategies. Traditional methods relying only on structured macroeconomic indicators often fall short in capturing the forward-looking cues embedded in central bank communications. This study examines whether predictive accuracy can be enhanced by integrating structured data with unstructured textual signals from Federal Reserve communications. We adopt a multi-modal framework, comparing traditional machine learning models, transformer-based language models, and deep learning architectures in both unimodal and hybrid settings. Our results show that hybrid models consistently outperform unimodal baselines. The best performance is achieved by combining TF-IDF features of FOMC texts with economic indicators in an XGBoost classifier, reaching a test AUC of 0.83. FinBERT-based sentiment features marginally improve ranking but perform worse in classification, especially under class imbalance. SHAP analysis reveals that sparse, interpretable features align more closely with policy-relevant signals. These findings underscore the importance of integrating textual and structured signals transparently. For monetary policy forecasting, simpler hybrid models can offer both accuracy and interpretability, delivering actionable insights for researchers and decision-makers.

Suggested Citation

  • Fiona Xiao Jingyi & Lili Liu, 2025. "Can We Reliably Predict the Fed's Next Move? A Multi-Modal Approach to U.S. Monetary Policy Forecasting," Papers 2506.22763, arXiv.org.
  • Handle: RePEc:arx:papers:2506.22763
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.22763
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.22763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.