IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.21110.html
   My bibliography  Save this paper

Orthogonality conditions for convex regression

Author

Listed:
  • Sheng Dai
  • Timo Kuosmanen
  • Xun Zhou

Abstract

Econometric identification generally relies on orthogonality conditions, which usually state that the random error term is uncorrelated with the explanatory variables. In convex regression, the orthogonality conditions for identification are unknown. Applying Lagrangian duality theory, we establish the sample orthogonality conditions for convex regression, including additive and multiplicative formulations of the regression model, with and without monotonicity and homogeneity constraints. We then propose a hybrid instrumental variable control function approach to mitigate the impact of potential endogeneity in convex regression. The superiority of the proposed approach is shown in a Monte Carlo study and examined in an empirical application to Chilean manufacturing data.

Suggested Citation

  • Sheng Dai & Timo Kuosmanen & Xun Zhou, 2025. "Orthogonality conditions for convex regression," Papers 2506.21110, arXiv.org.
  • Handle: RePEc:arx:papers:2506.21110
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.21110
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahul Mazumder & Arkopal Choudhury & Garud Iyengar & Bodhisattva Sen, 2019. "A Computational Framework for Multivariate Convex Regression and Its Variants," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 318-331, January.
    2. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    3. Cordero, José Manuel & Santín, Daniel & Sicilia, Gabriela, 2015. "Testing the accuracy of DEA estimates under endogeneity through a Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 244(2), pages 511-518.
    4. Yatchew,Adonis, 2003. "Semiparametric Regression for the Applied Econometrician," Cambridge Books, Cambridge University Press, number 9780521012263, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuosmanen, Natalia & Kuosmanen, Timo & Pajarinen, Mika, 2025. "Are Firms Hiring Enough Workers? Firm-level Evidence from Finland’s Manufacturing and Service Industries," ETLA Working Papers 133, The Research Institute of the Finnish Economy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose M. Cordero & Cristina Polo & Nickolaos G. Tzeremes, 2020. "Evaluating the efficiency of municipalities in the presence of unobserved heterogeneity," Journal of Productivity Analysis, Springer, vol. 53(3), pages 377-390, June.
    2. Aguirregabiria, Victor, 2009. "Econometric Issues and Methods in the Estimation of Production Functions," MPRA Paper 15973, University Library of Munich, Germany.
    3. R. Rijesh, 2015. "Technology Import and Manufacturing Productivity in India: Firm Level Analysis," Journal of Industry, Competition and Trade, Springer, vol. 15(4), pages 411-434, December.
    4. Dewitte, Ruben & Dumont, Michel & Merlevede, Bruno & Rayp, Glenn & Verschelde, Marijn, 2020. "Firm-Heterogeneous Biased Technological Change: A nonparametric approach under endogeneity," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1172-1182.
    5. Cave, Joshua & Chaudhuri, Kausik & Kumbhakar, Subal C., 2023. "Dynamic firm performance and estimator choice: A comparison of dynamic panel data estimators," European Journal of Operational Research, Elsevier, vol. 307(1), pages 447-467.
    6. Peter H. Egger & Katharina Erhardt & Andrea Lassmann, 2015. "Productivity and R&D as Drivers of Exports and Domestic Sales: Semi-parametric Evidence from French Firm-level Data," The World Economy, Wiley Blackwell, vol. 38(7), pages 1115-1129, July.
    7. Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Generalized quantile and expectile properties for shape constrained nonparametric estimation," European Journal of Operational Research, Elsevier, vol. 310(2), pages 914-927.
    8. Rødseth, Kenneth Løvold & Kuosmanen, Timo & Holmen, Rasmus Bøgh, 2025. "Mitigating simultaneity bias in seaport efficiency measurement," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    9. Guerini, Mattia & Nesta, Lionel & Ragot, Xavier & Schiavo, Stefano, 2024. "Zombification of the economy? Assessing the effectiveness of French government support during COVID-19 lockdown," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 263-280.
    10. Ensar Yılmaz & Zeynep Kaplan, 2022. "Heterogeneity of market power: firm-level evidence," Economic Change and Restructuring, Springer, vol. 55(2), pages 1207-1228, May.
    11. Geoffrey Barrows & Hélène Ollivier & Ariell Reshef, 2023. "Production Function Estimation with Multi-Destination Firms," CESifo Working Paper Series 10716, CESifo.
    12. Andrés César & Guillermo Falcone, 2020. "Heterogeneous Effects of Chinese Import Competition on Chilean Manufacturing Plants," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 1-60.
    13. Tianjiao Zhao & Xiang Xiao & Qinghui Dai, 2021. "Transportation Infrastructure Construction and High-Quality Development of Enterprises: Evidence from the Quasi-Natural Experiment of High-Speed Railway Opening in China," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    14. Giovanni Calice & Levent Kutlu & Ming Zeng, 2021. "Understanding US firm efficiency and its asset pricing implications," Empirical Economics, Springer, vol. 60(2), pages 803-827, February.
    15. Mary Amiti & Jozef Konings, 2007. "Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia," American Economic Review, American Economic Association, vol. 97(5), pages 1611-1638, December.
    16. Ruitu Xu & Yifei Min & Tianhao Wang & Zhaoran Wang & Michael I. Jordan & Zhuoran Yang, 2023. "Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models with Reinforcement Learning," Papers 2303.04833, arXiv.org.
    17. Yuan, Li & Rao, Siqi & Yang, Shenggang & Dai, Pengyi, 2023. "Does equity market openness increase productivity? the dual effects of Shanghai-Hong Kong stock Connect program in China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    18. Rodríguez-Pose, Andrés & Tselios, Vassilis & Winkler, Deborah & Farole, Thomas, 2013. "Geography and the Determinants of Firm Exports in Indonesia," World Development, Elsevier, vol. 44(C), pages 225-240.
    19. Philippe Martin & Thierry Mayer & Florian Mayneris, 2008. "Spatial Concentration and Firm-Level Productivity in France," Sciences Po publications 6858, Sciences Po.
    20. Mohamed Amara & Khaled Thabet, 2019. "Firm and regional factors of productivity: a multilevel analysis of Tunisian manufacturing," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(1), pages 25-51, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.21110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.