A Computational Framework for Multivariate Convex Regression and Its Variants
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2017.1407771
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.
- Ruitu Xu & Yifei Min & Tianhao Wang & Zhaoran Wang & Michael I. Jordan & Zhuoran Yang, 2023. "Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models with Reinforcement Learning," Papers 2303.04833, arXiv.org.
- Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
- Zhiqiang Liao & Sheng Dai & Eunji Lim & Timo Kuosmanen, 2024. "Overfitting Reduction in Convex Regression," Papers 2404.09528, arXiv.org, revised Oct 2024.
- Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Generalized quantile and expectile properties for shape constrained nonparametric estimation," European Journal of Operational Research, Elsevier, vol. 310(2), pages 914-927.
- Aubin-Frankowski, Pierre-Cyril & Szabo, Zoltan, 2022. "Handling hard affine SDP shape constraints in RKHSs," LSE Research Online Documents on Economics 115724, London School of Economics and Political Science, LSE Library.
- Beirlant, J. & Buitendag, S. & del Barrio, E. & Hallin, M. & Kamper, F., 2020.
"Center-outward quantiles and the measurement of multivariate risk,"
Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 79-100.
- Jan Bierlant & Sven Buitendag & Eustasio Del Barrio & Marc Hallin, 2019. "Center-Outward Quantiles And The Measurement Of Multivariate Risk," Working Papers ECARES 2019-30, ULB -- Universite Libre de Bruxelles.
- Timo Kuosmanen & Sheng Dai, 2023. "Modeling economies of scope in joint production: Convex regression of input distance function," Papers 2311.11637, arXiv.org.
- Liao, Zhiqiang & Dai, Sheng & Kuosmanen, Timo, 2024. "Convex support vector regression," European Journal of Operational Research, Elsevier, vol. 313(3), pages 858-870.
- José Luis Preciado Arreola & Daisuke Yagi & Andrew L. Johnson, 2020. "Insights from machine learning for evaluating production function estimators on manufacturing survey data," Journal of Productivity Analysis, Springer, vol. 53(2), pages 181-225, April.
- Eunji Lim, 2021. "Consistency of Penalized Convex Regression," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(1), pages 1-69, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:318-331. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.