IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.15723.html
   My bibliography  Save this paper

Modern approaches to building interpretable models of the property market using machine learning on the base of mass cadastral valuation

Author

Listed:
  • Irina G. Tanashkina
  • Alexey S. Tanashkin
  • Alexander S. Maksimchuik
  • Anna Yu. Poshivailo

Abstract

In this article, we review modern approaches to building interpretable models of property markets using machine learning on the base of mass valuation of property in the Primorye region, Russia. The researcher, lacking expertise in this topic, encounters numerous difficulties in the effort to build a good model. The main source of this is the huge difference between noisy real market data and ideal data which is very common in all types of tutorials on machine learning. This paper covers all stages of modeling: the collection of initial data, identification of outliers, the search and analysis of patterns in the data, the formation and final choice of price factors, the building of the model, and the evaluation of its efficiency. For each stage, we highlight potential issues and describe sound methods for overcoming emerging difficulties on actual examples. We show that the combination of classical linear regression with interpolation methods of geostatistics allows to build an effective model for land parcels. For flats, when many objects are attributed to one spatial point the application of geostatistical methods is difficult. Therefore we suggest linear regression with automatic generation and selection of additional rules on the base of decision trees, so called the RuleFit method. Thus we show, that despite such a strong restriction as the requirement of interpretability which is important in practical aspects, for example, legal matters, it is still possible to build effective models of real property markets.

Suggested Citation

  • Irina G. Tanashkina & Alexey S. Tanashkin & Alexander S. Maksimchuik & Anna Yu. Poshivailo, 2025. "Modern approaches to building interpretable models of the property market using machine learning on the base of mass cadastral valuation," Papers 2506.15723, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2506.15723
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.15723
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.15723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.