IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v17y2018i5p14n3.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data

Author

Listed:
  • Perrot-Dockès Marie

    (UMR MIA-Paris, AgroParisTech, INRA – Université Paris-Saclay, 75005 Paris, France)

  • Lévy-Leduc Céline

    (UMR MIA-Paris, AgroParisTech, INRA – Université Paris-Saclay, 75005 Paris, France)

  • Chiquet Julien

    (UMR MIA-Paris, AgroParisTech, INRA – Université Paris-Saclay, 75005 Paris, France)

  • Sansonnet Laure

    (UMR MIA-Paris, AgroParisTech, INRA – Université Paris-Saclay, 75005 Paris, France)

  • Brégère Margaux

    (UMR MIA-Paris, AgroParisTech, INRA – Université Paris-Saclay, 75005 Paris, France)

  • Étienne Marie-Pierre

    (UMR MIA-Paris, AgroParisTech, INRA – Université Paris-Saclay, 75005 Paris, France)

  • Robin Stéphane

    (UMR MIA-Paris, AgroParisTech, INRA – Université Paris-Saclay, 75005 Paris, France)

  • Genta-Jouve Grégory

    (UMR CNRS 8638 Comète – Université Paris-Descartes, CNRS, 75006 Paris, France)

Abstract

Omic data are characterized by the presence of strong dependence structures that result either from data acquisition or from some underlying biological processes. Applying statistical procedures that do not adjust the variable selection step to the dependence pattern may result in a loss of power and the selection of spurious variables. The goal of this paper is to propose a variable selection procedure within the multivariate linear model framework that accounts for the dependence between the multiple responses. We shall focus on a specific type of dependence which consists in assuming that the responses of a given individual can be modelled as a time series. We propose a novel Lasso-based approach within the framework of the multivariate linear model taking into account the dependence structure by using different types of stationary processes covariance structures for the random error matrix. Our numerical experiments show that including the estimation of the covariance matrix of the random error matrix in the Lasso criterion dramatically improves the variable selection performance. Our approach is successfully applied to an untargeted LC-MS (Liquid Chromatography-Mass Spectrometry) data set made of African copals samples. Our methodology is implemented in the R package MultiVarSel which is available from the Comprehensive R Archive Network (CRAN).

Suggested Citation

  • Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
  • Handle: RePEc:bpj:sagmbi:v:17:y:2018:i:5:p:14:n:3
    DOI: 10.1515/sagmb-2017-0077
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2017-0077
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2017-0077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perrot-Dockès, Marie & Lévy-Leduc, Céline & Sansonnet, Laure & Chiquet, Julien, 2018. "Variable selection in multivariate linear models with high-dimensional covariance matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 78-97.
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    3. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    8. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    9. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    12. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    13. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    14. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    16. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    17. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    18. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    19. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    20. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:17:y:2018:i:5:p:14:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.