IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.13257.html
   My bibliography  Save this paper

Joint Quantile Shrinkage: A State-Space Approach toward Non-Crossing Bayesian Quantile Models

Author

Listed:
  • David Kohns
  • Tibor Szendrei

Abstract

Crossing of fitted conditional quantiles is a prevalent problem for quantile regression models. We propose a new Bayesian modelling framework that penalises multiple quantile regression functions toward the desired non-crossing space. We achieve this by estimating multiple quantiles jointly with a prior on variation across quantiles, a fused shrinkage prior with quantile adaptivity. The posterior is derived from a decision-theoretic general Bayes perspective, whose form yields a natural state-space interpretation aligned with Time-Varying Parameter (TVP) models. Taken together our approach leads to a Quantile- Varying Parameter (QVP) model, for which we develop efficient sampling algorithms. We demonstrate that our proposed modelling framework provides superior parameter recovery and predictive performance compared to competing Bayesian and frequentist quantile regression estimators in simulated experiments and a real-data application to multivariate quantile estimation in macroeconomics.

Suggested Citation

  • David Kohns & Tibor Szendrei, 2025. "Joint Quantile Shrinkage: A State-Space Approach toward Non-Crossing Bayesian Quantile Models," Papers 2506.13257, arXiv.org.
  • Handle: RePEc:arx:papers:2506.13257
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.13257
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chavleishvili, Sulkhan & Kremer, Manfred & Lund-Thomsen, Frederik, 2023. "Quantifying financial stability trade-offs for monetary policy: a quantile VAR approach," Working Paper Series 2833, European Central Bank.
    2. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    3. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    4. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    5. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    6. Leo L Duan & Alexander L Young & Akihiko Nishimura & David B Dunson, 2020. "Bayesian constraint relaxation," Biometrika, Biometrika Trust, vol. 107(1), pages 191-204.
    7. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    8. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    9. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    10. P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
    11. Chavleishvili, Sulkhan & Kremer, Manfred, 2023. "Measuring systemic financial stress and its risks for growth," Working Paper Series 2842, European Central Bank.
    12. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    13. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    14. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Rahim Alhamzawi, 2015. "Model selection in quantile regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 445-458, February.
    16. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    2. R H Spady & S Stouli, 2018. "Dual regression," Biometrika, Biometrika Trust, vol. 105(1), pages 1-18.
    3. Zhang, Jinggong, 2024. "Blended insurance scheme: A synergistic conventional-index insurance mixture," Insurance: Mathematics and Economics, Elsevier, vol. 119(C), pages 93-105.
    4. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.
    5. Chavleishvili, Sulkhan & Kremer, Manfred & Lund-Thomsen, Frederik, 2023. "Quantifying financial stability trade-offs for monetary policy: a quantile VAR approach," Working Paper Series 2833, European Central Bank.
    6. Xenxo Vidal-Llana & Carlos Salort Sánchez & Vincenzo Coia & Montserrat Guillen, 2022. ""Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"," IREA Working Papers 202215, University of Barcelona, Research Institute of Applied Economics, revised Oct 2022.
    7. Tibor Szendrei, 2025. "Crossing penalised CAViaR," Papers 2501.10564, arXiv.org.
    8. Marian Vavra, 2023. "Bias-Correction in Time Series Quantile Regression Models," Working and Discussion Papers WP 3/2023, Research Department, National Bank of Slovakia.
    9. Chavleishvili, Sulkhan & Moench, Emanuel, 2025. "Natural disasters as macroeconomic tail risks," Journal of Econometrics, Elsevier, vol. 247(C).
    10. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    11. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    12. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    13. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    14. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    15. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    16. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    17. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    18. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    19. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    20. Tengyuan Liang, 2022. "Universal prediction band via semi‐definite programming," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1558-1580, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.13257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.