IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.13257.html
   My bibliography  Save this paper

Joint Quantile Shrinkage: A State-Space Approach toward Non-Crossing Bayesian Quantile Models

Author

Listed:
  • David Kohns
  • Tibor Szendrei

Abstract

Crossing of fitted conditional quantiles is a prevalent problem for quantile regression models. We propose a new Bayesian modelling framework that penalises multiple quantile regression functions toward the desired non-crossing space. We achieve this by estimating multiple quantiles jointly with a prior on variation across quantiles, a fused shrinkage prior with quantile adaptivity. The posterior is derived from a decision-theoretic general Bayes perspective, whose form yields a natural state-space interpretation aligned with Time-Varying Parameter (TVP) models. Taken together our approach leads to a Quantile- Varying Parameter (QVP) model, for which we develop efficient sampling algorithms. We demonstrate that our proposed modelling framework provides superior parameter recovery and predictive performance compared to competing Bayesian and frequentist quantile regression estimators in simulated experiments and a real-data application to multivariate quantile estimation in macroeconomics.

Suggested Citation

  • David Kohns & Tibor Szendrei, 2025. "Joint Quantile Shrinkage: A State-Space Approach toward Non-Crossing Bayesian Quantile Models," Papers 2506.13257, arXiv.org.
  • Handle: RePEc:arx:papers:2506.13257
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.13257
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.13257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.