IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.05755.html
   My bibliography  Save this paper

FlowOE: Imitation Learning with Flow Policy from Ensemble RL Experts for Optimal Execution under Heston Volatility and Concave Market Impacts

Author

Listed:
  • Yang Li
  • Zhi Chen

Abstract

Optimal execution in financial markets refers to the process of strategically transacting a large volume of assets over a period to achieve the best possible outcome by balancing the trade-off between market impact costs and timing or volatility risks. Traditional optimal execution strategies, such as static Almgren-Chriss models, often prove suboptimal in dynamic financial markets. This paper propose flowOE, a novel imitation learning framework based on flow matching models, to address these limitations. FlowOE learns from a diverse set of expert traditional strategies and adaptively selects the most suitable expert behavior for prevailing market conditions. A key innovation is the incorporation of a refining loss function during the imitation process, enabling flowOE not only to mimic but also to improve upon the learned expert actions. To the best of our knowledge, this work is the first to apply flow matching models in a stochastic optimal execution problem. Empirical evaluations across various market conditions demonstrate that flowOE significantly outperforms both the specifically calibrated expert models and other traditional benchmarks, achieving higher profits with reduced risk. These results underscore the practical applicability and potential of flowOE to enhance adaptive optimal execution.

Suggested Citation

  • Yang Li & Zhi Chen, 2025. "FlowOE: Imitation Learning with Flow Policy from Ensemble RL Experts for Optimal Execution under Heston Volatility and Concave Market Impacts," Papers 2506.05755, arXiv.org.
  • Handle: RePEc:arx:papers:2506.05755
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.05755
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.05755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.