ByteGen: A Tokenizer-Free Generative Model for Orderbook Events in Byte Space
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
- Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
- Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
- Peer Nagy & Sascha Frey & Silvia Sapora & Kang Li & Anisoara Calinescu & Stefan Zohren & Jakob Foerster, 2023. "Generative AI for End-to-End Limit Order Book Modelling: A Token-Level Autoregressive Generative Model of Message Flow Using a Deep State Space Network," Papers 2309.00638, arXiv.org.
- Aaron Wheeler & Jeffrey D. Varner, 2024. "MarketGPT: Developing a Pre-trained transformer (GPT) for Modeling Financial Time Series," Papers 2411.16585, arXiv.org.
- Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015.
"Simulating and Analyzing Order Book Data: The Queue-Reactive Model,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
- Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2013. "Simulating and analyzing order book data: The queue-reactive model," Papers 1312.0563, arXiv.org, revised Sep 2014.
- Yang Li & Zhi Chen, 2025. "FlowOE: Imitation Learning with Flow Policy from Ensemble RL Experts for Optimal Execution under Heston Volatility and Concave Market Impacts," Papers 2506.05755, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hamza Bodor & Laurent Carlier, 2025. "Deep Learning Meets Queue-Reactive: A Framework for Realistic Limit Order Book Simulation," Papers 2501.08822, arXiv.org.
- Leonardo Berti & Bardh Prenkaj & Paola Velardi, 2025. "TRADES: Generating Realistic Market Simulations with Diffusion Models," Papers 2502.07071, arXiv.org, revised Nov 2025.
- Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
- Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
- Michael Giegrich & Roel Oomen & Christoph Reisinger, 2024. "Limit Order Book Simulation and Trade Evaluation with $K$-Nearest-Neighbor Resampling," Papers 2409.06514, arXiv.org.
- Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Philippe Bergault & Enzo Cogn'eville, 2024. "Simulating and analyzing a sparse order book: an application to intraday electricity markets," Papers 2410.06839, arXiv.org.
- Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023.
"Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model,"
Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
- Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2022. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Post-Print hal-03827363, HAL.
- Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
- Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
- Xiaofei Lu & Frédéric Abergel, 2017. "Limit order book modelling with high dimensional Hawkes processes," Working Papers hal-01512430, HAL.
- Weibing Huang & Sergio Pulido & Mathieu Rosenbaum & Pamela Saliba & Emmanouil Sfendourakis, 2019. "From Glosten-Milgrom to the whole limit order book and applications to financial regulation," Papers 1902.10743, arXiv.org, revised Mar 2025.
- repec:hal:wpaper:hal-03968767 is not listed on IDEAS
- Julius Bonart & Martin D. Gould, 2017. "Latency and liquidity provision in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1601-1616, October.
- Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
- Peng Wu & Marcello Rambaldi & Jean-François Muzy & Emmanuel Bacry, 2023. "A single queue-reactive Hawkes model for the order flow," Post-Print hal-02409073, HAL.
- Federico Gonzalez & Mark Schervish, 2017. "Instantaneous order impact and high-frequency strategy optimization in limit order books," Papers 1707.01167, arXiv.org, revised Oct 2017.
- Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
- Ye-Sheen Lim & Denise Gorse, 2021. "Intra-Day Price Simulation with Generative Adversarial Modelling of the Order Flow," Papers 2109.13905, arXiv.org.
- Peng Wu & Marcello Rambaldi & Jean-François Muzy & Emmanuel Bacry, 2021. "Queue-reactive Hawkes models for the order flow," Working Papers hal-02409073, HAL.
- Julius Bonart & Martin Gould, 2015. "Latency and liquidity provision in a limit order book," Papers 1511.04116, arXiv.org, revised Jun 2016.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-MST-2025-08-18 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.02247. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2508.02247.html