IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.03780.html
   My bibliography  Save this paper

High-Dimensional Learning in Finance

Author

Listed:
  • Hasan Fallahgoul

Abstract

Recent advances in machine learning have shown promising results for financial prediction using large, over-parameterized models. This paper provides theoretical foundations and empirical validation for understanding when and how these methods achieve predictive success. I examine two key aspects of high-dimensional learning in finance. First, I prove that within-sample standardization in Random Fourier Features implementations fundamentally alters the underlying Gaussian kernel approximation, replacing shift-invariant kernels with training-set dependent alternatives. Second, I establish information-theoretic lower bounds that identify when reliable learning is impossible no matter how sophisticated the estimator. A detailed quantitative calibration of the polynomial lower bound shows that with typical parameter choices, e.g., 12,000 features, 12 monthly observations, and R-square 2-3%, the required sample size to escape the bound exceeds 25-30 years of data--well beyond any rolling-window actually used. Thus, observed out-of-sample success must originate from lower-complexity artefacts rather than from the intended high-dimensional mechanism.

Suggested Citation

  • Hasan Fallahgoul, 2025. "High-Dimensional Learning in Finance," Papers 2506.03780, arXiv.org, revised Jun 2025.
  • Handle: RePEc:arx:papers:2506.03780
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.03780
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.03780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.