IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.13529.html
   My bibliography  Save this paper

Improving Bayesian Optimization for Portfolio Management with an Adaptive Scheduling

Author

Listed:
  • Zinuo You
  • John Cartlidge
  • Karen Elliott
  • Menghan Ge
  • Daniel Gold

Abstract

Existing black-box portfolio management systems are prevalent in the financial industry due to commercial and safety constraints, though their performance can fluctuate dramatically with changing market regimes. Evaluating these non-transparent systems is computationally expensive, as fixed budgets limit the number of possible observations. Therefore, achieving stable and sample-efficient optimization for these systems has become a critical challenge. This work presents a novel Bayesian optimization framework (TPE-AS) that improves search stability and efficiency for black-box portfolio models under these limited observation budgets. Standard Bayesian optimization, which solely maximizes expected return, can yield erratic search trajectories and misalign the surrogate model with the true objective, thereby wasting the limited evaluation budget. To mitigate these issues, we propose a weighted Lagrangian estimator that leverages an adaptive schedule and importance sampling. This estimator dynamically balances exploration and exploitation by incorporating both the maximization of model performance and the minimization of the variance of model observations. It guides the search from broad, performance-seeking exploration towards stable and desirable regions as the optimization progresses. Extensive experiments and ablation studies, which establish our proposed method as the primary approach and other configurations as baselines, demonstrate its effectiveness across four backtest settings with three distinct black-box portfolio management models.

Suggested Citation

  • Zinuo You & John Cartlidge & Karen Elliott & Menghan Ge & Daniel Gold, 2025. "Improving Bayesian Optimization for Portfolio Management with an Adaptive Scheduling," Papers 2504.13529, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2504.13529
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.13529
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    2. Ma, Tian & Wang, Wanwan & Chen, Yu, 2023. "Attention is all you need: An interpretable transformer-based asset allocation approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
    3. Satchell, Stephen, 2007. "Forecasting Expected Returns in the Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780750683210.
    4. Florian Herzog & Gabriel Dondi & Hans P. Geering, 2007. "Stochastic Model Predictive Control And Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 203-233.
    5. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    6. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    7. Apichat Chaweewanchon & Rujira Chaysiri, 2022. "Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning," IJFS, MDPI, vol. 10(3), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Daping & Bai, Lin & Fang, Yong & Wang, Shouyang, 2022. "Multi‐period portfolio selection with investor views based on scenario tree," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    2. Benjamin Hippert & André Uhde & Sascha Tobias Wengerek, 2019. "Portfolio benefits of adding corporate credit default swap indices: evidence from North America and Europe," Review of Derivatives Research, Springer, vol. 22(2), pages 203-259, July.
    3. Shi, Longyu & Wang, Yunyun & Li, Wenyue & Zhang, Zhimin, 2025. "Multi-period mean–variance portfolio optimization with capital injections," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 400-412.
    4. Kanwal Iqbal Khan & Syed M. Waqar Azeem Naqvi & Muhammad Mudassar Ghafoor & Rana Shahid Imdad Akash, 2020. "Sustainable Portfolio Optimization with Higher-Order Moments of Risk," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    5. Markus Hertrich, 2015. "A Cautionary Note on the Put-Call Parity under an Asset Pricing Model with a Lower Reflecting Barrier," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 151(III), pages 227-260, September.
    6. Markus Hertrich & Heinz Zimmermann, 2017. "On the Credibility of the Euro/Swiss Franc Floor: A Financial Market Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(2-3), pages 567-578, March.
    7. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    8. Ma, Tian & Wang, Wanwan & Jiang, Fuwei, 2025. "Machine learning the performance of hedge fund," Journal of International Money and Finance, Elsevier, vol. 155(C).
    9. Xiangyu Cui & Jianjun Gao & Yun Shi, 2021. "Multi-period mean–variance portfolio optimization with management fees," Operational Research, Springer, vol. 21(2), pages 1333-1354, June.
    10. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    11. Xiao, Xiang & Hua, Xia & Qin, Kexin, 2024. "A self-attention based cross-sectional return forecasting model with evidence from the Chinese market," Finance Research Letters, Elsevier, vol. 62(PA).
    12. Wahid, Abdul & Kowalewski, Oskar, 2025. "Sustainable portfolio optimization: A multi-class framework for eco-friendly stocks," Research in International Business and Finance, Elsevier, vol. 76(C).
    13. Lin, Lisha & Li, Yaqiong & Gao, Rui & Wu, Jianhong, 2021. "The numerical simulation of Quanto option prices using Bayesian statistical methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    14. Vladimir Dombrovskii & Tatyana Obedko, 2014. "Portfolio Optimization in the Financial Market with Correlated Returns under Constraints, Transaction Costs and Different Rates for Borrowing and Lending," Papers 1410.8042, arXiv.org.
    15. Hertrich Markus, 2016. "The Costs of Implementing a Unilateral One-Sided Exchange Rate Target Zone," Review of Economics, De Gruyter, vol. 67(1), pages 91-120, May.
    16. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    17. Pejman Peykani & Mojtaba Nouri & Mir Saman Pishvaee & Camelia Oprean-Stan & Emran Mohammadi, 2023. "Credibilistic Multi-Period Mean-Entropy Rolling Portfolio Optimization Problem Based on Multi-Stage Scenario Tree," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    18. Lotfi, Somayyeh & Zeniosn, Stravros A., 2016. "Equivalence of Robust VaR and CVaR Optimization," Working Papers 16-03, University of Pennsylvania, Wharton School, Weiss Center.
    19. Yuling Max Chen & Bin Li & David Saunders, 2025. "Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics," Papers 2501.16659, arXiv.org.
    20. Vladimir Dombrovskii & Tatyana Obyedko, 2014. "Dynamic Investment Portfolio Optimization under Constraints in the Financial Market with Regime Switching using Model Predictive Control," Papers 1410.1136, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.13529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.