IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.04854.html
   My bibliography  Save this paper

Aggregation Model and Market Mechanism for Virtual Power Plant Participation in Inertia and Primary Frequency Response

Author

Listed:
  • Changsen Feng
  • Zhongliang Huang
  • Jun Lin
  • Licheng Wang
  • Youbing Zhang
  • Fushuan Wen

Abstract

The declining inertia provision from synchronous generators in modern power systems necessitates aggregating distributed ener-gy resources (DERs) into virtual power plants (VPPs) to unlock their potential in delivering inertia and primary frequency re-sponse (IPFR) through ancillary service markets. To facilitate DER participation in the IPFR market, this paper proposes a DER aggregation model and market mechanism for VPP partici-pating in IPFR. First, an energy-IPFR market framework is de-veloped, in which a VPP acts as an intermediary to coordinate heterogeneous DERs. Second, by taking into account the delay associated with inertia, an optimization-based VPP aggregation method is introduced to encapsulate the IPFR process involving a variety of DERs. Third, an energy-IPFR market mechanism with VPP participation is introduced, aiming to minimize social costs while considering the frequency response delay characteristics of the participants. Finally, the performance of the proposed ap-proaches is verified by case studies on a modified IEEE 30-bus system.

Suggested Citation

  • Changsen Feng & Zhongliang Huang & Jun Lin & Licheng Wang & Youbing Zhang & Fushuan Wen, 2025. "Aggregation Model and Market Mechanism for Virtual Power Plant Participation in Inertia and Primary Frequency Response," Papers 2503.04854, arXiv.org.
  • Handle: RePEc:arx:papers:2503.04854
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.04854
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Kun & Wei, Lishen & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Zhu, Mengshu & Wen, Jinyu, 2024. "Incentive-compatible primary frequency response ancillary service market mechanism for incorporating diverse frequency support resources," Energy, Elsevier, vol. 306(C).
    2. Qiu, Dawei & Baig, Aimon Mirza & Wang, Yi & Wang, Lingling & Jiang, Chuanwen & Strbac, Goran, 2024. "Market design for ancillary service provisions of inertia and frequency response via virtual power plants: A non-convex bi-level optimisation approach," Applied Energy, Elsevier, vol. 361(C).
    3. Zheng Shi & Haixiao Zhu & Haibo Zhao & Peng Wang & Yan Liang & Kaikai Wang & Jie Chen & Xiaoming Zheng & Hongli Liu, 2024. "Parameter Estimation Method for Virtual Power Plant Frequency Response Model Based on SLP," Energies, MDPI, vol. 17(13), pages 1-15, June.
    4. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    5. Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    3. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    4. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    5. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    6. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    7. Wu, Chuanshen & Zhou, Yue & Gan, Wei & Wu, Jianzhong, 2025. "Robust scheduling of a pulp and paper mill considering flexibility provision from steam power generation," Applied Energy, Elsevier, vol. 377(PC).
    8. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    9. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    10. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    11. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    12. Jun Yan & Yuqi Zhao & Qianpeng Hao & Yu Ji & Minhao Zhang & Huan Ma & Nan Meng, 2025. "Energy Scheduling Strategy for the Gas–Steam–Power System in Steel Enterprises Under the Influence of Time-Of-Use Tariff," Energies, MDPI, vol. 18(3), pages 1-19, February.
    13. Iliev, I.K. & Terziev, A.K. & Beloev, H.I. & Nikolaev, I. & Georgiev, A.G., 2021. "Comparative analysis of the energy efficiency of different types co-generators at large scales CHPs," Energy, Elsevier, vol. 221(C).
    14. Lefeng Cheng & Pengrong Huang & Mengya Zhang & Ru Yang & Yafei Wang, 2025. "Optimizing Electricity Markets Through Game-Theoretical Methods: Strategic and Policy Implications for Power Purchasing and Generation Enterprises," Mathematics, MDPI, vol. 13(3), pages 1-90, January.
    15. Gao, Jinling & Maalla, Allam & Li, Xuetao & Zhou, Xiao & Lian, Kong, 2024. "Comprehensive model for efficient microgrid operation: Addressing uncertainties and economic considerations," Energy, Elsevier, vol. 306(C).
    16. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2014. "Short-term scheduling of combined heat and power generation units in the presence of demand response programs," Energy, Elsevier, vol. 71(C), pages 289-301.
    17. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.
    18. Keivan Rahimi-Adli & Egidio Leo & Benedikt Beisheim & Sebastian Engell, 2021. "Optimisation of the Operation of an Industrial Power Plant under Steam Demand Uncertainty," Energies, MDPI, vol. 14(21), pages 1-28, November.
    19. Lin, Chengrong & Hu, Bo & Tai, Heng-Ming & Shao, Changzheng & Xie, Kaigui & Wang, Yu, 2024. "Performance optimization of VPP in fast frequency control ancillary service provision," Applied Energy, Elsevier, vol. 376(PB).
    20. Karl-Kiên Cao & Kai von Krbek & Manuel Wetzel & Felix Cebulla & Sebastian Schreck, 2019. "Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System Optimization Models," Energies, MDPI, vol. 12(24), pages 1-51, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.04854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.