IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.00549.html
   My bibliography  Save this paper

The Uncertainty of Machine Learning Predictions in Asset Pricing

Author

Listed:
  • Yuan Liao
  • Xinjie Ma
  • Andreas Neuhierl
  • Linda Schilling

Abstract

Machine learning in asset pricing typically predicts expected returns as point estimates, ignoring uncertainty. We develop new methods to construct forecast confidence intervals for expected returns obtained from neural networks. We show that neural network forecasts of expected returns share the same asymptotic distribution as classic nonparametric methods, enabling a closed-form expression for their standard errors. We also propose a computationally feasible bootstrap to obtain the asymptotic distribution. We incorporate these forecast confidence intervals into an uncertainty-averse investment framework. This provides an economic rationale for shrinkage implementations of portfolio selection. Empirically, our methods improve out-of-sample performance.

Suggested Citation

  • Yuan Liao & Xinjie Ma & Andreas Neuhierl & Linda Schilling, 2025. "The Uncertainty of Machine Learning Predictions in Asset Pricing," Papers 2503.00549, arXiv.org.
  • Handle: RePEc:arx:papers:2503.00549
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.00549
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    3. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    4. Jagannathan, Ravi & Wang, Zhenyu, 1996. "The Conditional CAPM and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 51(1), pages 3-53, March.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    6. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    7. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    8. Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
    9. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    10. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    11. Andrew J Patton & Brian M Weller, 2022. "Risk Price Variation: The Missing Half of Empirical Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 35(11), pages 5127-5184.
    12. Gregory Connor & Matthias Hagmann & Oliver Linton, 2012. "Efficient Semiparametric Estimation of the Fama–French Model and Extensions," Econometrica, Econometric Society, vol. 80(2), pages 713-754, March.
    13. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    14. Antoine Didisheim & Shikun (Barry) Ke & Bryan T. Kelly & Semyon Malamud, 2023. "Complexity in Factor Pricing Models," NBER Working Papers 31689, National Bureau of Economic Research, Inc.
    15. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    16. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    17. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    18. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    19. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    20. Damir Filipovic & Paul Schneider, 2024. "Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels," Papers 2410.21858, arXiv.org, revised Mar 2025.
    21. Banz, Rolf W & Breen, William J, 1986. "Sample-Dependent Results Using Accounting and Market Data: Some Evidence," Journal of Finance, American Finance Association, vol. 41(4), pages 779-793, September.
    22. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    23. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
    24. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    25. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    26. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Journal of Finance, American Finance Association, vol. 75(5), pages 2503-2553, October.
    27. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    28. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Papers 2006.04269, arXiv.org.
    29. Joachim Freyberger, 2018. "Non-parametric Panel Data Models with Interactive Fixed Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1824-1851.
    30. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    31. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    32. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    33. Chen, Honghui & Desai, Hemang & Krishnamurthy, Srinivasan, 2013. "A First Look at Mutual Funds That Use Short Sales," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(3), pages 761-787, June.
    34. Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
    35. Rosenberg, Barr & McKibben, Walt, 1973. "The Prediction of Systematic and Specific Risk in Common Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(2), pages 317-333, March.
    36. Evan W. Anderson & Ai-Ru (Meg) Cheng, 2016. "Robust Bayesian Portfolio Choices," The Review of Financial Studies, Society for Financial Studies, vol. 29(5), pages 1330-1375.
    37. Antoine Didisheim & Shikun Ke & Bryan T. Kelly & Semyon Malamud, 2023. "Complexity in Factor Pricing Models," Swiss Finance Institute Research Paper Series 23-19, Swiss Finance Institute.
    38. Eugene F. Fama & Kenneth R. French, 2016. "Dissecting Anomalies with a Five-Factor Model," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 69-103.
    39. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    40. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    41. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    42. Mengmeng Ao & Li Yingying & Xinghua Zheng, 2019. "Approaching Mean-Variance Efficiency for Large Portfolios," The Review of Financial Studies, Society for Financial Studies, vol. 32(7), pages 2890-2919.
    43. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
    44. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    45. Damir Filipović & Paul Schneider, 2024. "Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels," Swiss Finance Institute Research Paper Series 24-60, Swiss Finance Institute.
    46. Bessembinder, Hendrik, 2018. "Do stocks outperform Treasury bills?," Journal of Financial Economics, Elsevier, vol. 129(3), pages 440-457.
    47. Patton, Andrew J. & Weller, Brian M., 2020. "What you see is not what you get: The costs of trading market anomalies," Journal of Financial Economics, Elsevier, vol. 137(2), pages 515-549.
    48. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    2. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    3. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    4. Lin William Cong & Guanhao Feng & Jingyu He & Xin He, 2022. "Growing the Efficient Frontier on Panel Trees," NBER Working Papers 30805, National Bureau of Economic Research, Inc.
    5. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    6. Yonghe Lu & Yanrong Yang & Terry Zhang, 2024. "Double Descent in Portfolio Optimization: Dance between Theoretical Sharpe Ratio and Estimation Accuracy," Papers 2411.18830, arXiv.org.
    7. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    8. Cong Wang, 2024. "Stock return prediction with multiple measures using neural network models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    9. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    10. Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021. "Estimating the anomaly base rate," Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
    11. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    12. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    13. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    14. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    15. Jinghai He & Cheng Hua & Chunyang Zhou & Zeyu Zheng, 2025. "Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information," Papers 2501.17992, arXiv.org.
    16. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    17. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    18. Matteo Bagnara, 2024. "Asset Pricing and Machine Learning: A critical review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 27-56, February.
    19. Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2023. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 126151, London School of Economics and Political Science, LSE Library.
    20. Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.00549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.