IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.16041.html
   My bibliography  Save this paper

Binary Outcome Models with Extreme Covariates: Estimation and Prediction

Author

Listed:
  • Laura Liu
  • Yulong Wang

Abstract

This paper presents a novel semiparametric method to study the effects of extreme events on binary outcomes and subsequently forecast future outcomes. Our approach, based on Bayes' theorem and regularly varying (RV) functions, facilitates a Pareto approximation in the tail without imposing parametric assumptions beyond the tail. We analyze cross-sectional as well as static and dynamic panel data models, incorporate additional covariates, and accommodate the unobserved unit-specific tail thickness and RV functions in panel data. We establish consistency and asymptotic normality of our tail estimator, and show that our objective function converges to that of a panel Logit regression on tail observations with the log extreme covariate as a regressor, thereby simplifying implementation. The empirical application assesses whether small banks become riskier when local housing prices sharply decline, a crucial channel in the 2007--2008 financial crisis.

Suggested Citation

  • Laura Liu & Yulong Wang, 2025. "Binary Outcome Models with Extreme Covariates: Estimation and Prediction," Papers 2502.16041, arXiv.org.
  • Handle: RePEc:arx:papers:2502.16041
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.16041
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armelle Guillou & Peter Hall, 2001. "A diagnostic for selecting the threshold in extreme value analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 293-305.
    2. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    3. Laura Liu & Alexandre Poirier & Ji-Liang Shiu, 2021. "Identification and Estimation of Partial Effects in Nonlinear Semiparametric Panel Models," Papers 2105.12891, arXiv.org, revised Jul 2024.
    4. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    5. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    6. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    7. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    8. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    9. Hsiao,Cheng, 2022. "Analysis of Panel Data," Cambridge Books, Cambridge University Press, number 9781009060752, June.
    10. Hsiao,Cheng, 2022. "Analysis of Panel Data," Cambridge Books, Cambridge University Press, number 9781316512104, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers CWP16/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    3. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    4. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2021. "Inference on semiparametric multinomial response models," Quantitative Economics, Econometric Society, vol. 12(3), pages 743-777, July.
    5. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers 16/16, Institute for Fiscal Studies.
    6. Oyebayo Ridwan Olaniran & Saidat Fehintola Olaniran & Ali Rashash R. Alzahrani & Nada MohammedSaeed Alharbi & Asma Ahmad Alzahrani, 2025. "Bayesian Tapered Narrowband Least Squares for Fractional Cointegration Testing in Panel Data," Mathematics, MDPI, vol. 13(10), pages 1-28, May.
    7. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    8. Maximilian Riedl & Ingo Geishecker, 2014. "Keep it simple: estimation strategies for ordered response models with fixed effects," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2358-2374, November.
    9. Matthieu Bussière, 2013. "Balance of payment crises in emerging markets: how early were the ‘early’ warning signals?," Applied Economics, Taylor & Francis Journals, vol. 45(12), pages 1601-1623, April.
    10. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    11. Cheng Hsiao, 2007. "Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-22, May.
    12. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    14. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Forecasting sovereign default using panel models: A comparative analysis," Computing in Economics and Finance 2004 228, Society for Computational Economics.
    15. Lionel WILNER, 2019. "The Dynamics of Individual Happiness," Working Papers 2019-18, Center for Research in Economics and Statistics.
    16. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    17. Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
    18. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    19. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    20. Pierre-Carl Michaud & Konstantinos Tatsiramos, 2005. "Employment Dynamics of Married Women in Europe," Working Papers WR-273, RAND Corporation.
    21. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.16041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.