IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.16269.html
   My bibliography  Save this paper

(Mis)information diffusion and the financial market

Author

Listed:
  • Tommaso Di Francesco
  • Daniel Torren Peraire

Abstract

This paper investigates the interplay between information diffusion in social networks and its impact on financial markets with an Agent-Based Model (ABM). Agents receive and exchange information about an observable stochastic component of the dividend process of a risky asset \`a la Grossman and Stiglitz. A small proportion of the network has access to a private signal about the component, which can be clean (information) or distorted (misinformation). Other agents are uninformed and can receive information only from their peers. All agents are Bayesian, adjusting their beliefs according to the confidence they have in the source of information. We examine, by means of simulations, how information diffuses in the network and provide a framework to account for delayed absorption of shocks, that are not immediately priced as predicted by classical financial models. We investigate the effect of the network topology on the resulting asset price and evaluate under which condition misinformation diffusion can make the market more inefficient.

Suggested Citation

  • Tommaso Di Francesco & Daniel Torren Peraire, 2024. "(Mis)information diffusion and the financial market," Papers 2412.16269, arXiv.org.
  • Handle: RePEc:arx:papers:2412.16269
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.16269
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Peng, Lin & Xiong, Wei, 2006. "Investor attention, overconfidence and category learning," Journal of Financial Economics, Elsevier, vol. 80(3), pages 563-602, June.
    3. Panchenko, Valentyn & Gerasymchuk, Sergiy & Pavlov, Oleg V., 2013. "Asset price dynamics with heterogeneous beliefs and local network interactions," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2623-2642.
    4. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    5. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    6. Paul C. Tetlock, 2011. "All the News That's Fit to Reprint: Do Investors React to Stale Information?," The Review of Financial Studies, Society for Financial Studies, vol. 24(5), pages 1481-1512.
    7. David Hirshleifer & Sonya Seongyeon Lim & Siew Hong Teoh, 2009. "Driven to Distraction: Extraneous Events and Underreaction to Earnings News," Journal of Finance, American Finance Association, vol. 64(5), pages 2289-2325, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    2. Thomas Gilbert & Shimon Kogan & Lars Lochstoer & Ataman Ozyildirim, 2012. "Investor Inattention and the Market Impact of Summary Statistics," Management Science, INFORMS, vol. 58(2), pages 336-350, February.
    3. Sharifkhani, Ali & Simutin, Mikhail, 2021. "Feedback loops in industry trade networks and the term structure of momentum profits," Journal of Financial Economics, Elsevier, vol. 141(3), pages 1171-1187.
    4. Jiao, Peiran & Veiga, André & Walther, Ansgar, 2020. "Social media, news media and the stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 63-90.
    5. Ballinari, Daniele & Audrino, Francesco & Sigrist, Fabio, 2022. "When does attention matter? The effect of investor attention on stock market volatility around news releases," International Review of Financial Analysis, Elsevier, vol. 82(C).
    6. Guomei Tang & Xueyong Zhang, 2021. "Media attention to locations and the cross‐section of stock returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 2301-2336, April.
    7. Feng Dong, 2020. "Noise-driven abnormal institutional investor attention," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 467-488, September.
    8. Riccardo Ferretti & Francesco Pattarin, 2008. "Is public information really public? The role of newspapers," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 08013, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    9. Anastassia Fedyk, 2018. "Disagreement after News: Gradual Information Diffusion or Differences of Opinion?," 2018 Meeting Papers 1095, Society for Economic Dynamics.
    10. Frank, Murray Z. & Sanati, Ali, 2018. "How does the stock market absorb shocks?," Journal of Financial Economics, Elsevier, vol. 129(1), pages 136-153.
    11. Li, Zeming & Sakkas, Athanasios & Urquhart, Andrew, 2022. "Intraday time series momentum: Global evidence and links to market characteristics," Journal of Financial Markets, Elsevier, vol. 57(C).
    12. David Hirshleife, 2015. "Behavioral Finance," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 133-159, December.
    13. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    14. Duan, Jiaxin & Kou, Fangyuan & Wang, Zining & Wei, Yixin, 2024. "When echoes surpass voices: Market reaction to forwarded news," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    15. Ozdamar, Melisa & Sensoy, Ahmet & Akdeniz, Levent, 2022. "Retail vs institutional investor attention in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    16. Mohrschladt, Hannes & Langer, Thomas, 2020. "Biased information weight processing in stock markets," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 89-106.
    17. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    18. Fedyk, Anastassia & Hodson, James, 2023. "When can the market identify old news?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 92-113.
    19. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
    20. Pengcheng Zhang & Kunpeng Xu & Jian Huang & Jiayin Qi, 2024. "Investor sentiment and the holiday effect in the cryptocurrency market: evidence from China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-36, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.16269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.