IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.10415.html
   My bibliography  Save this paper

Dynamic Causal Effects in a Nonlinear World: the Good, the Bad, and the Ugly

Author

Listed:
  • Michal Koles'ar
  • Mikkel Plagborg-M{o}ller

Abstract

Applied macroeconomists frequently use impulse response estimators motivated by linear models. We study whether the estimands of such procedures have a causal interpretation when the true data generating process is in fact nonlinear. We show that vector autoregressions and linear local projections onto observed shocks or proxies identify weighted averages of causal effects regardless of the extent of nonlinearities. By contrast, identification approaches that exploit heteroskedasticity or non-Gaussianity of latent shocks are highly sensitive to departures from linearity. Our analysis is based on new results on the identification of marginal treatment effects through weighted regressions, which may also be of interest to researchers outside macroeconomics.

Suggested Citation

  • Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2024. "Dynamic Causal Effects in a Nonlinear World: the Good, the Bad, and the Ugly," Papers 2411.10415, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2411.10415
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.10415
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    2. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    3. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julius Schaper, 2025. "Residualised Treatment Intensity and the Estimation of Average Partial Effects," Papers 2502.10301, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Schlotter & Guido Schwerdt & Ludger Woessmann, 2011. "Econometric methods for causal evaluation of education policies and practices: a non-technical guide," Education Economics, Taylor & Francis Journals, vol. 19(2), pages 109-137.
    2. Andreas Georgiadis & Liza Benny & Paul Dornan & Jere Behrman, 2021. "Maternal Undernutrition in Adolescence and Child Human Capital Development Over the Life Course: Evidence from an International Cohort Study," Economica, London School of Economics and Political Science, vol. 88(352), pages 942-968, October.
    3. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    4. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    5. Alberto Manconi & Massimo Massa & Lei Zhang, 2016. "Bondholder Concentration and Credit Risk: Evidence from a Natural Experiment," Review of Finance, European Finance Association, vol. 20(1), pages 127-159.
    6. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    7. aus dem Moore, Jan Peter & Spitz-Oener, Alexandra, 2012. "Bye bye, GI: The impact of the US military drawdown on local German labor markets," SFB 649 Discussion Papers 2012-024, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Joshua D. Angrist & Jörn-Steffen Pischke, 2017. "Undergraduate Econometrics Instruction: Through Our Classes, Darkly," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 125-144, Spring.
    9. Marno Verbeek, 2017. "Using linear regression to establish empirical relationships," IZA World of Labor, Institute of Labor Economics (IZA), pages 336-336, February.
    10. Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2022. "Contamination Bias in Linear Regressions," Working Papers 2022-15, Princeton University. Economics Department..
    11. Choi, Sangyup & Willems, Tim & Yoo, Seung Yong, 2024. "Revisiting the monetary transmission mechanism through an industry-level differential approach," Journal of Monetary Economics, Elsevier, vol. 145(C).
    12. George Planiteros, 2022. "Reverse matching for ex-ante policy evaluation," DEOS Working Papers 2206, Athens University of Economics and Business.
    13. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    14. Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2024. "Contamination Bias in Linear Regressions," American Economic Review, American Economic Association, vol. 114(12), pages 4015-4051, December.
    15. Stijn Vansteelandt & Oliver Dukes, 2022. "Assumption‐lean inference for generalised linear model parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 657-685, July.
    16. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    17. Stephen Gibbons & Henry G. Overman, 2012. "Mostly Pointless Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 172-191, May.
    18. Jens Ruhose, 2015. "Microeconometric Analyses on Economic Consequences of Selective Migration," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61, May.
    19. Quintana-Domeque, Climent & Wohlfart, Johannes, 2016. "“Relative concerns for consumption at the top”: An intertemporal analysis for the UK," Journal of Economic Behavior & Organization, Elsevier, vol. 129(C), pages 172-194.
    20. Myoung-jae Lee, 2016. "Generalized Difference in Differences With Panel Data and Least Squares Estimator," Sociological Methods & Research, , vol. 45(1), pages 134-157, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.10415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.