IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.06484.html
   My bibliography  Save this paper

ajdmom: A Python Package for Deriving Moment Formulas of Affine Jump Diffusion Processes

Author

Listed:
  • Yan-Feng Wu
  • Jian-Qiang Hu

Abstract

We introduce ajdmom, a Python package designed for automatically deriving moment formulae for the well-established affine jump diffusion processes with state-independent jump intensities. ajdmom can produce explicit closed-form expressions for conditional and unconditional moments of any order, significantly enhancing the usability of these models. Additionally, ajdmom can compute partial derivatives of these moments with respect to the model parameters, offering a valuable tool for sensitivity analysis. The package's modular architecture makes it easy for adaptation and extension by researchers. ajdmom is open-source and readily available for installation from GitHub or the Python package index (PyPI).

Suggested Citation

  • Yan-Feng Wu & Jian-Qiang Hu, 2024. "ajdmom: A Python Package for Deriving Moment Formulas of Affine Jump Diffusion Processes," Papers 2411.06484, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2411.06484
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.06484
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    2. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-Feng Wu & Jian-Qiang Hu, 2025. "Density Approximation of Affine Jump Diffusions via Closed-Form Moment Matching," Papers 2504.06942, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    2. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    3. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    4. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    5. Carrasco, Marine & Kotchoni, Rachidi, 2017. "Efficient Estimation Using The Characteristic Function," Econometric Theory, Cambridge University Press, vol. 33(2), pages 479-526, April.
    6. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    7. Xiangjin Shen & Hiroki Tsurumi, 2011. "Comparison of Bayesian Model Selection Criteria and Conditional Kolmogorov Test as Applied to Spot Asset Pricing Models," Departmental Working Papers 201126, Rutgers University, Department of Economics.
    8. repec:wyi:journl:002108 is not listed on IDEAS
    9. John Knight & Stephen Satchell, 2008. "Testing for infinite order stochastic dominance with applications to finance, risk and income inequality," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 32(1), pages 35-46, January.
    10. Corradi, Valentina & Swanson, Norman R., 2011. "Predictive density construction and accuracy testing with multiple possibly misspecified diffusion models," Journal of Econometrics, Elsevier, vol. 161(2), pages 304-324, April.
    11. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    12. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
    13. Chen, Songxi & Peng, Liang & Yu, Cindy, 2013. "Parameter Estimation and Model Testing for Markov Processes via Conditional Characteristic Functions," MPRA Paper 46273, University Library of Munich, Germany.
    14. Dinghai Xu & John Knight, 2011. "Continuous Empirical Characteristic Function Estimation of Mixtures of Normal Parameters," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 25-50.
    15. repec:wyi:journl:002117 is not listed on IDEAS
    16. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2018. "Dynamic derivative strategies with stochastic interest rates and model uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 49-71.
    17. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    18. Egorov, Alexei V. & Hong, Yongmiao & Li, Haitao, 2006. "Validating forecasts of the joint probability density of bond yields: Can affine models beat random walk?," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 255-284.
    19. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    20. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    21. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    22. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.06484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.